Schéma d’Aménagement et de Gestion des Eaux du bassin du Célé

I. Etat des Lieux

Le 12 juin 2007
SOMMAIRE

LISTE DES FIGURES .. 8

LISTE DES TABLEAUX ... 10

PREAMBULE ... 13

1 CONTEXTE ET OBJECTIFS DE L’ETUDE .. 13
 1.1 CONTEXTE REGLEMENTAIRE ... 13
 1.1.1 La Loi sur l’Eau du 3 janvier 1992 ... 13
 1.1.2 Le SDAGE du bassin Adour-Garonne ... 13
 1.1.3 La Directive Cadre européenne sur l’Eau (DCE) .. 14
 1.2 QU’EST CE QU’UN SAGE ? .. 16
 1.3 LE SAGE « BASSIN DU CELE » ... 18
 1.3.1 Emergence du projet de SAGE ... 18
 1.3.2 Calendrier de mise en œuvre .. 18
 1.3.3 Composition de la Commission Locale de l’Eau 19
 1.3.4 Groupes de travail ... 20
 1.3.5 Elaboration du contenu du SAGE et animation de la CLE 20

2 CONTENU DU RAPPORT ... 21
 2.1 COLLECTE DES DONNEES ... 21
 2.2 EXPLOITATION DES DONNEES .. 21
 2.3 BILAN DU CONTRAT DE RIVIERE CELE ... 22
 2.3.1 Qualité des eaux ... 22
 2.3.2 Rejets domestiques .. 22
 2.3.3 Rejets industriels .. 23
 2.3.4 Rejets agricoles ... 23
 2.3.5 Restauration des berges et des milieux aquatiques 24
 2.3.6 Préservation et mise en valeur des milieux naturels 24
 2.3.7 Animation, information, sensibilisation .. 25
 2.3.8 Etudes ... 25
 2.3.9 Bilan financier ... 25

CHAPITRE 1 : CARACTERISTIQUES GENERALES DU BASSIN DU CELE 27

 1 PRESENTATION DU TERRITOIRE ... 27
 1.1 SITUATION GEOGRAPHIQUE ... 27
 1.2 CARACTERISTIQUES CLIMATIQUES .. 27
 1.3 RESEAU HYDROGRAPHIQUE ... 28
 1.4 CARACTERISTIQUES GEOLOGIQUES ET PEDOLOGIQUES 31
 1.5 OCCUPATION DU SOL ... 31
 1.6 PATRIMOINE CULTUREL ET PAYSAGER ... 33
 1.6.1 Partie amont du bassin du Célé ... 33
 1.6.2 Partie aval du bassin du Célé ... 33
 1.6.3 Vallée du Célé ... 34
2 CONTEXTE HUMAIN ET ECONOMIQUE ..35
 2.1 DECOUPAGES ADMINISTRATIFS ET DEMOGRAPHIE35
 2.2 ACTIVITES ECONOMIQUES ..36
 2.2.1 Activités agricoles ..36
 2.2.2 Activités industrielles ...37
 2.2.3 Activités de tourisme et de loisirs ..38
 2.3 USAGERS ET ACTEURS DES COURS D’EAU39

CHAPITRE 2 : CONNAISSANCE DE LA RESSOURCE EN EAU ET DES MILIEUX AQUATIQUES ..41
1 EVALUATION DE LA QUALITE DES EAUX SUPERFICIELLES ..41
 1.1 ORIGINE DES DONNEES ..41
 1.2 QUALITE PHYSICO-CHIMIQUE ..42
 1.2.1 Matières organiques et oxydables ..42
 1.2.2 Matières azotées (hors nitrates) ...43
 1.2.3 Nitrates ...44
 1.2.4 Matières phosphorées ...44
 1.2.5 Particules en suspension ..45
 1.2.6 Minéralisation ...45
 1.2.7 Acidification ..46
 1.2.8 Température ..47
 1.2.9 Métaux lourds ...47
 1.2.10 Autres altérations ..49
 1.3 QUALITE BACTERIOLOGIQUE ...52
 1.4 QUALITE HYDROBIOLOGIQUE ..54
 1.5 IMPACTS SUR LES USAGES ET FONCTIONS56

2 EAUX SOUTERRAINES ...57
 2.1 ORIGINE DES DONNEES ..57
 2.2 DESCRIPTION DES TERRAINS AQUIFERES ..57
 2.2.1 Les systèmes karstiques des Causses ..57
 2.2.2 L’eau souterraine dans le reste du bassin59
 2.3 QUALITE DES EAUX SOUTERRAINES ...60
 2.3.1 Suivis ponctuels ..60
 2.3.2 Suivis réguliers ..62

3 ASPECTS QUANTITATIFS DE LA RESSOURCE ...65
 3.1 ORIGINE DES DONNEES ..65
 3.2 REGIME HYDROLOGIQUE DU CÉLE ..65
 3.3 LES CRUES ..66
 3.3.1 Caractéristiques des crues du bassin du Célé66
 3.3.2 Les dommages économiques ...69
 3.3.3 La prévision des crues ..70
 3.3.4 La prévention du risque ..70
 3.3.5 Etudes, travaux ou projets de protection72
 3.4 LES ÉTIAGES ..75
 3.4.1 Caractéristiques des basses eaux ..75
 3.4.2 La sensibilité aux usages préleveurs ..76
 3.4.3 Propositions du Plan de Gestion des Étiages78

4 MILIEUX AQUATIQUES ET NATURELS ..81
 4.1 ORIGINE DES DONNEES ..81
 4.2 MILIEUX NATURELS ...81
 4.2.1 Milieux naturels protégés ..81
 4.2.2 Le Parc naturel régional des Causses du Quercy86
Etat des lieux - Version du 12/06/2007

SSchéma d’AA AAménagement et de GG GGestion des EE EEaux – Bassin du Célé

CHAPITRE 3 : USAGES ET FONCTIONS DE L’EAU ET DES MILIEUX AQUATIQUES 123

5 EVALUATION DE LA QUALITE DES EAUX DU BASSIN DU CELE SELON LA DIRECTIVE

CADRE EUROPEENNE SUR L’EAU .. 117

5.1 PRECISIONS SUR LE BON ETAT DES COURS D’EAU................................. 117

5.1.1 Méthode d’évaluation de la qualité des eaux de surface........................ 117

5.1.2 Méthode d’évaluation de la qualité des eaux souterraines 117

5.1.3 Cas particulier des masses d’eau fortement modifiées ou artificielles 118

5.2 ETAT DES LIEUX DU BASSIN ADOUR-GARONNE ET APPLICATION SUR LE BASSIN DU CELE 118

5.2.1 Méthode d’analyse retenue pour l’état des lieux du bassin Adour-Garonne 118

5.2.2 Qualité écologique des eaux du bassin du Céle 118

5.3 DE L’ETAT DES LIEUX DU BASSIN ADOUR-GARONNE AUX SCENARII TENDANCIELS 119

5.3.1 Méthode d’évaluation du risque de non atteinte du bon état 119

5.3.2 Scénarii tendanciels sur le bassin du Céle .. 120

5.4 LE PROGRAMME DE MESURES ENVISAGE .. 121

5.4.1 Enjeux retenus sur le bassin du Céle .. 121

5.4.2 Principaux dysfonctionnements retenus sur le bassin du Céle.............. 121

5.4.3 Programme de mesure proposé pour le bassin du Céle 121

CHAPITRE 3 : USAGES ET FONCTIONS DE L’EAU ET DES MILIEUX AQUATIQUES 123

1 ALIMENTATION EN EAU POTABLE ... 123

1.1 LE CONTEXTE ... 123

1.2 LES USAGER S ET LEURS REPRESENTANTS .. 123

1.3 VOLUMES PRELEVES ... 124

1.4 RESOURCES SOLLIGITEES ... 126

1.4.1 Captages AEP en eaux superficielles .. 126

1.4.2 Captages AEP en eaux souterraines ... 127

1.5 BESOINS AEP ... 127

1.6 QUALITE DES EAUX DISTRIBUTES .. 129

1.6.1 Les nitrates .. 129

1.6.2 Les pesticides ... 129

1.6.3 La qualité bactériologique... 130

1.6.4 Autres paramètres ... 131

1.7 PROTECTION ET SECURITE DE L’APPROVISIONNEMENT 132

1.7.1 Les périmètres de protection .. 132

1.7.2 Etat des unités de traitement, réseaux et ouvrages 134

1.8 PERSPECTIVES POUR L’ALIMENTATION EN EAU POTABLE 135

2 ASSAINISSEMENT COLLECTIF ET AUTONOME 137

2.1 LE CONTEXTE .. 137

2.2 ASSAINISSEMENT COLLECTIF ... 137

2.2.1 Part de l’assainissement collectif .. 137

2.2.2 Caractéristiques des ouvrages d’épuration 138
3 ACTIVITÉS INDUSTRIELLES ET URBANISATION

3.1 LE CONTEXTE ... 157
3.2 LES USAGERS ET LEURS REPRÉSENTANTS 157
3.3 LA POLLUTION D’ORIGINE INDUSTRIELLE 159
 3.3.1 Modalités de traitement des eaux 159
 3.3.2 Pollutions produites ... 160
3.4 LES STRUCTURES D’ACCUŁ .. 161
3.5 L’ENERGIE HYDROÉLECTRIQUE 162
3.6 PRELEVEMENTS INDUSTRIELS 163
3.7 EXTRACTION DE MATERIEL ... 164
3.8 DECHETS PHYSIQUES .. 165
3.9 URBANISATION ET INFRASTRUCTURES 166

4 ACTIVITÉS AGRICOLES ET FORESTIERES 169

4.1 LES USAGERS ET LEURS REPRÉSENTANTS 169
4.2 LA POLLUTION D’ORIGINE AGRICOLE 170
 4.2.1 Origine des pollutions ... 170
 4.2.2 La pression organique agricole 171
 4.2.3 Les produits phytosanitaires 177
4.3 ABREUVEMENT DU BETAIL ... 178
 4.3.1 Les pratiques d’abreuvement 178
 4.3.2 Les prélèvements d’eau pour l’abreuvement 179
4.4 L’IRRIGATION .. 180
 4.4.1 Surfaces irriguées .. 180
 4.4.2 Volumes prélevés .. 181
4.5 L’AMÉNAGEMENT DE L’ESPACE 183
 4.5.1 Le Drainage ... 183
 4.5.2 Autres pratiques d’aménagement de l’espace 183
4.6 LES EVOLUTIONS DU SECTEUR AGRICOLE EN COURS 185
 4.6.1 Les nouvelles réglementations 185
 4.6.2 Les programmes d’incitation nationaux 185
 4.6.3 Les outils contractuels ... 186
 4.6.4 Le Programme Agricole du Contrat de rivière Célé 187
 4.6.5 Les démarches de conseil 188
4.7 LA SYLVICULTURE .. 189
 4.7.1 Évolution des surfaces forestières 189
 4.7.2 Les types de couverts .. 189
 4.7.3 Type de propriété et mode de gestion des forêts 190

5 LOISIRS LIE A L’EAU ... 192

5.1 LE CONTEXTE ... 192
5.2 LE DISPOSITIF INF’EAU LOISIRS 192
 5.2.1 Origine du projet .. 192
 5.2.2 Le projet ... 192
 5.2.3 Le dispositif .. 193
 5.2.4 L’information aux usagers 193
5.3 CHARTE DE CONCILIATION DES USAGERS 194
5.4 LA PECHE DE LOISIRS ... 194
5.4.1 Le contexte ... 194
5.4.2 Les usagers et leurs représentants .. 195
5.4.3 Les pratiques halieutiques et les aménagements .. 195
5.5 LE CANOË .. 198
5.5.4 Contexte juridique .. 198
5.5.5 Fréquentation, zonage et pratique du canoé-kayak sur le bassin du Célé 198
5.6 AUTRES LOISIRS LIÉS À L’EAU ... 202
5.6.1 La baignade .. 202
5.6.2 La randonnée .. 202
5.6.3 Les autres usages des rivières .. 203
5.7 LES CHAUSSEES .. 204
5.7.1 Caractéristiques des chaussées du bassin du Célé .. 204
5.7.2 Intérêt patrimonial des moulins .. 206

ANNEXES .. 207

ANNEXE 1 : DONNÉES DU SUIVI QUALITÉ .. 211
ANNEXE 2 : ANALYSE DE L’IMPACT DE LA QUALITÉ DES EAUX SUR LES USAGES 219
ANNEXE 3 : DONNÉES DU SUIVI HYDROLOGIQUE ... 227
ANNEXE 4 : LISTE DES ZNIEFF .. 231
ANNEXE 5 : DONNÉES SUR LA QUALITÉ DES EAUX DISTRIBUIÉES 235
ANNEXE 6 : DONNÉES COMMUNALES SUR L’ASSAINISSEMENT 239
ANNEXE 7 : DONNÉES AGRICOLES ... 247
ANNEXE 8 : GLOSSAIRE ... 251
ANNEXE 9 : REFERENCES BIBLIOGRAPHIQUES ... 255
LISTE DES FIGURES

FIGURE 1 : LES GRANDES ETAPES DE LA DCE ... 15
FIGURE 2 : SITUATION GEOGRAPHIQUE DU BASSIN DU CÉLE 27
FIGURE 3 : OCCUPATION DU SOL ... 32
FIGURE 4 : COUPE HYDROGEOLOGIQUE REGIONALE .. 58
FIGURE 5 : CLASSE DE QUALITE DU SYSTEME SEQ-EAU .. 62
FIGURE 6 : QUALITE DE LA SOURCE DE LA PESCALERIE ... 63
FIGURE 7 : QUALITE DE LA SOURCE D’ANGOINAT ... 63
FIGURE 8 : ESPECES REMARQUABLES DE LIBELLULES .. 82
FIGURE 9 : ESPECES REMARQUABLES DE POISSONS ... 82
FIGURE 10 : ESPECES REMARQUABLES D’ORCHIDEES DES PELOUSES DE ST-SANTIN DE MAURS .. 85
FIGURE 11 : EXEMPLES D’ESPECES D’INTERET PATRIMOINAL DES ZONES HUMIDES ... 88
FIGURE 12 : LES TROIS ESPECES PATRIMOINIALES AQUATIQUES ETUDEES PAR LE LEH ... 95
FIGURE 13 : REPRESENTATION SCHEMATIQUE D’UNE BERGE 107
FIGURE 14 : REPARTITION DES GESTIONNAIRES DE CAPTAGE AEP SELON LA FREQUENCE DE CONTAMINATION BACTERIOLOGIQUE DE L’EAU DISTRIBUEE .. 131
FIGURE 15 : CHARGES BRUTES JOURNALIERES TRAITEES EN ASSAINISSEMENT COLLECTIF PAR SOUS BASSIN ... 141
FIGURE 16 : CHARGES BRUTES ANNUELLES TRAITEES EN ASSAINISSEMENT COLLECTIF PAR HECTARE 142
FIGURE 17 : CHARGES NETTES JOURNALIERES ISSUES DE L’ASSAINISSEMENT COLLECTIF PAR TEMPS SEC PAR SOUS BASSIN .. 143
FIGURE 18 : CHARGES NETTES ANNUELLES ISSUES DE L’ASSAINISSEMENT COLLECTIF PAR TEMPS SEC PAR HECTARE .. 143
FIGURE 19 : CHARGES NETTES JOURNALIERES ISSUES DE L’ASSAINISSEMENT COLLECTIF PAR TEMPS DE PLUIE PAR SOUS BASSIN .. 144
FIGURE 20 : CHARGES NETTES ISSUES DE L’ASSAINISSEMENT COLLECTIF PAR TEMPS DE PLUIE PAR HA 145
FIGURE 21 : CHARGES BRUTES JOURNALIERES TRAITEES EN ASSAINISSEMENT AUTONOME PAR SOUS BASSIN ... 148
FIGURE 22 : CHARGES BRUTES ANNUELLES TRAITEES EN ASSAINISSEMENT AUTONOME PAR HECTARE 148
FIGURE 23 : CHARGES NETTES JOURNALIERES ISSUES DE L’ASSAINISSEMENT AUTONOME PAR TEMPS SEC PAR SOUS BASSIN .. 150
FIGURE 24 : CHARGES NETTES ANNUELLES ISSUES DE L’ASSAINISSEMENT AUTONOME PAR TEMPS SEC PAR HA .. 150
FIGURE 25 : COMPARAISONS DES CHARGES BRUTES TRAITEES EN ASSAINISSEMENT AUTONOME ET EN ASSAINISSEMENT COLLECTIF ... 153
FIGURE 26 : COMPARAISON DES CHARGES NETTES ISSUES DE L’ASSAINISSEMENT AUTONOME ET DE
L’ASSAINISSEMENT COLLECTIF PAR TEMPS SEC ... 154

FIGURE 27 : COMPARAISON DES CHARGES NETTES ISSUES DE L’ASSAINISSEMENT AUTONOME ET DE L’ASSAINISSEMENT COLLECTIF PAR TEMPS DE PLUIE ... 154

FIGURE 28 : CHARGES BRUTES TOTALES ISSUES DES REJETS DOMESTIQUES ... 155

FIGURE 29 : CHARGES NETTES TOTALES ISSUES DES REJETS DOMESTIQUES PAR TEMPS SEC .. 155

FIGURE 30 : CHARGEMENT TOTAL PAR PRODUCTION ANIMALE ET PAR SOUS BASSIN ... 171

FIGURE 31 : PRESSION EN AZOTE ORGANIQUE DUE AUX ELEVAGES BOVINS, OVINS-CAPRINS ET PORCINS PAR SOUS BASSIN .. 172

FIGURE 32 : CHARGES BRUTES DES CHEPTELS PAR SOUS BASSIN ... 173

FIGURE 33 : PART DES REJETS AGRICOLES ET DOMESTIQUES DANS LA CHARGE BRUTE EN DBO5 175

FIGURE 34 : PART DES REJETS AGRICOLES ET DOMESTIQUES DANS LA CHARGE TOTALE EN DBO5 PAR TEMPS SEC (EN T/AN) .. 175

FIGURE 35 : PART DES REJETS AGRICOLES ET DOMESTIQUES DANS LA CHARGE TOTALE EN DBO5 PAR TEMPS DE PLUIE (EN T/AN) ... 176

FIGURE 36 : TYPES DE FORMATIONS FORESTIERES DU BASSIN VERSANT DU CELE .. 190
LISTE DES TABLEAUX

TABLEAU 1 : ETAPES DU SAGE « BASSIN DU CÉLE » ... 18
TABLEAU 2 : DECOUPAGE DU BASSIN DU CÉLE EN 14 SOUS BASSINS VERSANTS 29
TABLEAU 3 : DECOUPAGE DU LINEAIRE DU CÉLE EN 9 MASSES D’EAU 30
TABLEAU 4 : CORRESPONDANCES ENTRE LES 14 SOUS BASSINS ET LES 9 MASSES D’EAU 30
TABLEAU 5 : REPARTITION DE LA POPULATION SUR LE BASSIN VERSANT DU CÉLE 35
TABLEAU 6 : CARACTERISTIQUES GENERALES DE L’AGRICULTURE DU BASSIN 36
TABLEAU 7 : REPARTITION DE LA POPULATION ACTIVE SELON LES CATEGORIES SOCIOPROFESSIONNELLES... 38
TABLEAU 8 : LISTE DES STATIONS DE PRELEVEMENT ACTIVE POUR L’ETUDE DE LA QUALITE PHYSICO CHIMIQUE (PC) ET/OU BACTERIOLOGIQUE (B) DU CÉLE ET DE SES AFFLUENTS ... 41
TABLEAU 9 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE MATIERES ORGANIQUES ET OXYDABLES ... 43
TABLEAU 10 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE MATIERES AZOTEES 43
TABLEAU 11 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE NITRATES 44
TABLEAU 12 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE MATIERES PHOSPHOREES 44
TABLEAU 13 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE MATIERES EN SUSPENSION 45
TABLEAU 14 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE MINERALISATION 46
TABLEAU 15 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE ACIDIFICATION 46
TABLEAU 16 : EVOLUTION DE LA QUALITE DES EAUX POUR LE PARAMETRE TEMPERATURE 47
TABLEAU 18 : PRODUITS PHYTOSANITAIRES DETECTES SUR LE CÉLE A MAURS 50
TABLEAU 19 : EVOLUTION DE L’INDICE DE QUALITE BACTERIOLOGIQUE SUR LE CÉLE ET SES AFFLUENTS 52
TABLEAU 21 : PRINCIPALES RESURGENCES CONNUES .. 58
TABLEAU 22 : QUALITE DE 7 SOURCES POUR LES PARAMETRES NITRATES ET PHOSPHATES 61
TABLEAU 23 : DEBITS MOYENS MENSUELS CALCULES SUR 36 ANS (ORNiac) OU 55 ANS (MERLANÇON) 65
TABLEAU 24 : CRUES HISTORIQUES DU CÉLE – STATION DU PONT GAMBETTA A FIGEAC 67
TABLEAU 25 : FREQUENCE DES CRUES INONDANTES A FIGEAC, STATION DU PONT GAMBETTA 67
TABLEAU 26 : CARACTERISTIQUES DES CRUES A FIGEAC, STATION DE MERLANÇON 67
TABLEAU 27 : CARACTERISTIQUES DES CRUES A ORNiac, STATION DES AMIS DU CÉLE 68
TABLEAU 28 : CARACTERISTIQUES DES BASSES EAUX ... 75
TABLEAU 29 : SENSIBILITE AUX USAGES PRELEVERS : SCENARIO VCN10 NATUREL UN AN SUR 5 77
TABLEAU 30 : PRELEVEMENTS NETS A L’ETIAGE ... 78
TABLEAU 31 : LES DEBITS SEUILS PROPOSES PAR LE PGE .. 78
<table>
<thead>
<tr>
<th>Tableau</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Evaluation du nombre de points noirs paysagers dans la vallée du Célé entre Bagnac et Bouzies</td>
<td>92</td>
</tr>
<tr>
<td>33</td>
<td>Les principales espèces remarquables présentes sur le bassin du Célé</td>
<td>94</td>
</tr>
<tr>
<td>34</td>
<td>Compte rendu des prospections : sites hébergeant des espèces remarquables</td>
<td>96</td>
</tr>
<tr>
<td>35</td>
<td>Resultats des prospections "Loutre" de novembre 2003</td>
<td>98</td>
</tr>
<tr>
<td>36</td>
<td>Synthèse de l'état piscicole des cours d'eau et des actions recommandées dans les PDPG</td>
<td>104</td>
</tr>
<tr>
<td>37</td>
<td>Prélevements pour l'Alimentation en Eau Potable sur le bassin du Célé</td>
<td>124</td>
</tr>
<tr>
<td>38</td>
<td>Évaluation de la consommation d'eau pour l'AEP (2004)</td>
<td>125</td>
</tr>
<tr>
<td>39</td>
<td>Les prises d'eau en rivière destinées à l'AEP</td>
<td>126</td>
</tr>
<tr>
<td>40</td>
<td>Exploitant de captage AEP distinguent une eau périodiquement ou fréquemment contaminée</td>
<td>130</td>
</tr>
<tr>
<td>41</td>
<td>Les unités de traitement</td>
<td>134</td>
</tr>
<tr>
<td>42</td>
<td>Type de traitement des stations d'épuration du bassin</td>
<td>138</td>
</tr>
<tr>
<td>43</td>
<td>Taille des unités d'assainissement</td>
<td>139</td>
</tr>
<tr>
<td>44</td>
<td>Travaux d'assainissement collectif réalisés entre 2000 et 2006</td>
<td>140</td>
</tr>
<tr>
<td>45</td>
<td>Travaux d'assainissement collectif prévus pour 2007-2008</td>
<td>140</td>
</tr>
<tr>
<td>46</td>
<td>Estimation des charges brutes traitées en assainissement collectif</td>
<td>141</td>
</tr>
<tr>
<td>47</td>
<td>Estimation des charges nettes issues de l'assainissement collectif par temps sec</td>
<td>142</td>
</tr>
<tr>
<td>48</td>
<td>Estimation des charges nettes issues de l'assainissement collectif par temps de pluie</td>
<td>144</td>
</tr>
<tr>
<td>49</td>
<td>Estimation des charges nettes issues de l'assainissement collectif par temps de pluie sans la STEP de Figeac</td>
<td>145</td>
</tr>
<tr>
<td>50</td>
<td>Estimation des charges brutes traitées en assainissement autonome</td>
<td>147</td>
</tr>
<tr>
<td>51</td>
<td>Estimation des charges nettes issues de l'assainissement autonome (1ère simulation)</td>
<td>149</td>
</tr>
<tr>
<td>52</td>
<td>Estimation des charges nettes issues de l'assainissement autonome (2ème simulation)</td>
<td>149</td>
</tr>
<tr>
<td>53</td>
<td>Répartition des entreprises du bassin en fonction de leur type de rejet</td>
<td>158</td>
</tr>
<tr>
<td>54</td>
<td>Mode de raccordement des principales industries : rejetant sur le bassin du Célé</td>
<td>159</td>
</tr>
<tr>
<td>55</td>
<td>Estimation des principaux rejets industriels après traitement dans le bassin du Célé (MES, MO, MI, N, P, METOX)</td>
<td>160</td>
</tr>
<tr>
<td>56</td>
<td>Les microcentrales du bassin du Célé</td>
<td>162</td>
</tr>
<tr>
<td>57</td>
<td>Prélevements d'eau par les activités industrielles du bassin du Célé</td>
<td>163</td>
</tr>
<tr>
<td>58</td>
<td>Carrières actives sur le territoire</td>
<td>164</td>
</tr>
<tr>
<td>59</td>
<td>Bilan des documents d'urbanisme sur le territoire</td>
<td>167</td>
</tr>
<tr>
<td>60</td>
<td>Points forts et points faibles des pratiques agricoles du bassin</td>
<td>170</td>
</tr>
<tr>
<td>61</td>
<td>Estimation des charges nettes de l'agriculture par temps sec</td>
<td>174</td>
</tr>
<tr>
<td>62</td>
<td>Estimation des charges nettes de l'agriculture par temps de pluie</td>
<td>174</td>
</tr>
<tr>
<td>63</td>
<td>Comparaison des charges brutes domestiques et agricoles</td>
<td>174</td>
</tr>
</tbody>
</table>
TABLEAU 64 : COMPARAISON DES CHARGES NETTES DOMESTIQUES ET AGRICOLES ESTIMEES PAR TEMPS SEC
EN KG/HA/AN.. 175

TABLEAU 65 : COMPARAISON DES CHARGES NETTES DOMESTIQUES ET AGRICOLES ESTIMEES PAR TEMPS DE
PLUIE EN KG/HA/AN ... 176

TABLEAU 66 : SURFACES IRRIGUEES PAS SOUS BASSIN VERSANT .. 180

TABLEAU 67 : PRELEVEMENTS AUTORISES POUR L’IRRIGATION .. 181

TABLEAU 68 : VOLUMES MESURES DES PRELEVEMENTS EN EAU SUPERFICIELLE POUR L’IRRIGATION.... 182

TABLEAU 69 : IMPORTANCE RELATIVE DES DIFFERENTES FORMATIONS FORESTIERES 190

TABLEAU 70 : LES RESERVES DE PECHE DU BASSIN DU CELE ... 197
PREAMBULE

1 Contexte et Objectifs de l’Etude

1.1 Contexte réglementaire

1.1.1 La Loi sur l’Eau du 3 janvier 1992

Les deux premiers articles de la Loi sur l’Eau déclarent :

« L’eau fait partie du patrimoine commun de la Nation. Sa protection, sa mise en valeur et le développement de la ressource utilisable, dans le respect des équilibres naturels, sont d’intérêt général. »

« Cette gestion équilibrée vise à assurer la préservation des écosystèmes aquatiques, des sites et des zones humides,… »

1.1.2 Le SDAGE du bassin Adour - Garonne

Le Schéma Directeur d’Aménagement et de Gestion des Eaux (SDAGE) définit, pour chacun des six grands bassins métropolitains, les grandes orientations d’une gestion équilibrée de la ressource en eau et s’impose aux programmes et aux décisions de l’Etat, des collectivités et de leurs établissements publics.

Un tableau de bord permettant le suivi de l’application des principales mesures est publié tous les deux ans depuis 1997.
Dans le cas du SDAGE du bassin Adour - Garonne, 7 enjeux prioritaires ont été définis :
- Focaliser l’effort de dépollution sur les programmes prioritaires : les points noirs de pollution domestiques et industrielle, les toxiques, les zones de baignades.
- Restaurer les débits d’étiage sur les rivières les plus déficitaires.
- Protéger et restaurer les milieux aquatiques et littoraux remarquables du bassin, ouvrir les cours d’eau aux poissons grands migrateurs.
- Remettre et maintenir les rivières en bon état de fonctionner.
- Sauvegarder la qualité des aquifères d’eau douce nécessaires à l’alimentation humaine.
- Délimiter et faire connaître largement les zones soumises au risque d’inondation.
- Instaurer la gestion équilibré par bassin versant, grande vallée et par système aquifère.

Tout SAGE doit être compatible avec le Schéma Directeur d’Aménagement et de Gestion des Eaux. Le SDAGE et ses annexes constituent pour le SAGE un document de référence pour aborder l’ensemble des thèmes de la gestion intégrée des eaux.

1.1.3 La Directive Cadre européenne sur l’Eau (DCE)

- La Directive Cadre européenne sur l’Eau (DCE) 2000/60/CE du 23 octobre 2000 établit un cadre pour une politique communautaire dans le domaine de l’eau. Ce cadre fixe aux Etats membres les 4 objectifs environnementaux suivants pour l’ensemble des ressources en eau (cours d’eau, lacs, eaux côtières, eaux saumâtres, eaux souterraines) :
 - Prévenir la détérioration de l’état des eaux ;
 - Atteindre le bon état des eaux d’ici 2015 ;
 - Réduire les rejets de substances prioritaires (toxiques) ;
 - Respecter les objectifs spécifiques dans les zones protégées (zones concernées par les directives européennes existantes).

La directive instaure une ambition nouvelle pour les états membres qui est l’obligation de résultats. Elle constitue de ce fait un enjeu important pour l’ensemble des acteurs locaux, porteurs d’une politique de gestion équilibrée de l’eau et des milieux aquatiques.

La DCE définit des districts qui représentent la principale unité pour la gestion des bassins hydrographiques ; ce sont des zones terrestres et maritimes, composées d’un ou plusieurs bassins hydrographiques, ainsi que des eaux souterraines et eaux côtières associées, identifiée selon la DCE.

Le district Adour-Garonne, au sens de la directive, comprend l’ensemble des bassins hydrographiques suivants : Adour, Garonne (compris le bassin du Lot), Dordogne, Charente et côtiers aquitains et charentais avec leurs limites hydrographiques strictes sur la base des limites communales.
Il correspond pratiquement, moyennant des adaptations à ses frontières, au bassin Adour - Garonne défini par la loi sur l’eau de 1964.

- Les masses d’eau :

- Bon état des cours d’eau = objectif pour 2015 :
L’article 4 précise les objectifs environnementaux qui s’appliquent aux différentes masses d’eau.
Pour les eaux de surface :
 o les États membres préviennent toute dégradation de leur état,
 o ils doivent parvenir à un bon état\(^1\) de toutes les masses d’eau au plus tard en 2015,
 o pour les masses d’eau fortement modifiées et artificielles, l’objectif est de parvenir au bon potentiel écologique et au bon état chimique en 2015,
 o les États membres doivent réduire les pollutions dues aux substances prioritaires et supprimer progressivement les émissions de substances dangereuses prioritaires.

Pour les eaux souterraines :
 • les États membres doivent prévenir tout rejet polluant dans les eaux souterraines,
 • ils doivent parvenir au bon état\(^2\) de ces masses d’eau en 2015,
 • ils doivent inverser toute tendance à la hausse de la concentration de tout polluant résultant de l’activité humaine.

La DCE demande une participation active de tous les acteurs de l'eau à cette démarche et l'organisation de la consultation du public aux étapes clés : état des lieux, définition des objectifs...

1. *Une eau de surface* "naturelle" est considérée en bon état si son état écologique et son état chimique sont bons. L’état écologique est défini à partir de l’analyse des états biologique (faune et flore aquatiques), physicochimique (température, concentration en oxygène, nitrates, phosphates...) et hydromorphologique (état du lit et des berges, continuité de l’amont vers l’aval...). L’état chimique est estimé à partir des teneurs en Nitrate et des substances toxiques dont les phytosanitaires et les métaux.

2. *Une eau souterraine* est en bon état si son état chimique et son état quantitatif (équilibre entre captage et renouvellement) sont bons.
L’état des lieux du bassin Adour - Garonne :

Les objectifs et les mesures du futur SAGE devront être cohérents avec le plan de gestion. Compte tenu des incidences du plan de gestion sur le futur SAGE, les éléments de l’état des lieux du bassin Adour-Garonne, propres au Célé sont repris à divers endroits de ce rapport. C’est notamment le cas pour l’analyse de la qualité des eaux superficielles et souterraines au sens de la directive cadre, qui figure dans le deuxième chapitre du document, partie 5.

1.2 Qu’est ce qu’un SAGE ?

Outil de planification, il aboutit concrètement à trois types de réalisations :
 - des orientations de gestion de la ressource en eau qui s’imposent aux décisions des services de l’Etat et des collectivités publiques, et avec lesquelles les actions dans le domaine de l’eau doivent être compatibles ;
 - des orientations d’aménagement (études et travaux) visant à améliorer la protection et la gestion de la ressource ;
 - un accompagnement technique et des outils de communication.

- Relation SAGE/ contrat de rivière : Un contrat de rivière est un programme (5 ans) de travaux de dépollution (domestique, agricole et industrielle), d’aménagements, de suivi des cours d’eaux et de
communication. Un Schéma d’Aménagement et de Gestion des Eaux est un outil de planification qui intervient davantage sur le fond en adaptant les règles de gestion de la ressource en eau aux problématiques rencontrées sur le territoire. Ses effets s’inscrivent dans la durée et ont une portée plus importante que ceux d’un Contrat de rivière.

- Le SAGE s’établit suivant trois grandes étapes successives :
 - La phase préliminaire aboutit à la délimitation du périmètre d’étude du SAGE et à la constitution de la Commission Locale de l’Eau (CLE) : organe d’étude et de décision composé de représentants des collectivités territoriales, des usagers, de l’Etat et de ses établissements publics ;
 - La phase d’élaboration du projet. Elle comprend sa conception proprement dite (réalisation d’un état des lieux, définition des objectifs, inventaire des mesures à prendre et des opérations à lancer) et la procédure d’approbation finale par l’autorité préfectorale ;
 - La phase de mise en œuvre et de suivi du SAGE constitue la période opérationnelle de la démarche qui s’étale sur 10 années.

- La Commission Locale de l’Eau (CLE) est l’organe consultatif et décisionnel du Schéma d’Aménagement et de Gestion des Eaux. Véritable noyau opérationnel, elle :
 - élabore le SAGE en concertation étroite avec les partenaires institutionnels et les représentants d’usagers ;
 - recherche les financements et assure la mise en œuvre matérielle du SAGE ;
 - prévient et arbitre les conflits ;
 - organise le suivi du SAGE puis facilite les adaptations et révisions ultérieures.

La CLE définit donc les orientations de gestion, met en place un cadre de référence et le fait respecter.

Les articles 5 de la loi sur l’eau de 1992 et 3 du décret 92-1042 portant application de ladite loi, stipulent que la Commission Locale de l’Eau est composée de trois collèges :
 - pour moitié de représentants des collectivités territoriales et établissements publics locaux, dont le Président (Conseils Régionaux, Conseils Généraux, Communes, Communautés de communes, Parc naturel régional des Causses du Quercy …) ;
 - pour le quart, de représentants des usagers : organisations socio-professionnelles et associatives (Fédérations de pêche, Comité départemental de canoë-kayak, Associations de riverains, …) ;
 - et pour le quart restant de représentants de l’Etat et de ses établissements publics (Préfectures, DIREN, DDAF, Agence de l’Eau, …).

Elle se réunit en moyenne deux à trois fois par an. En général, un secrétariat technique et un bureau exécutif sont constitués par des membres de la CLE. En dehors de ces instances, des commissions thématiques ou géographiques travaillent de façon plus fine sur certains problèmes ou dans certains cas, assurent une consultation plus large des élus, des usagers et des riverains en dehors de la commission.

- Concrètement :
 - Le SAGE peut avoir des répercussions économiques pour les gestionnaires de la ressource, puisque les orientations définies dans celui-ci impliquent à court ou moyen terme la réalisation de travaux. C’est pourquoi la Commission Locale de l’Eau doit veiller à rendre compatible ses décisions avec les possibilités financières des gestionnaires. A ce titre, une évaluation économique du SAGE et de ses répercussions est généralement réalisée lors de l’élaboration de son contenu.
 - Enfin, et pour assurer ses missions de gestion d’une politique de l’eau sur le bassin, la CLE doit être tenue informée de tous les projets dans son domaine de compétence. Le degré d’intervention de la CLE dans chaque projet (formulation d’avis, de conseils ou simple information) dépend de leur nature, de leur incidence supposée sur les milieux aquatiques ou encore de leur cohérence avec les orientations de gestion définies dans le SAGE.
1.3 Le SAGE « bassin du Célé »

1.3.1 Emergence du projet de SAGE

Faisant suite à la demande du Comité de rivière Célé, l’Association pour l’Aménagement de la Vallée du Lot a transmis aux préfets du Cantal et du Lot, un dossier argumentaire demandant le démarrage du SAGE.

La consultation des collectivités a été réalisée fin 2003 par les services de l’Etat. Une très grande majorité de communes et de collectivités territoriales concernées ont validé le périmètre proposé (bassin versant du Célé). En juillet 2004, ce périmètre a aussi été approuvé par le Comité de bassin Adour - Garonne.

1.3.2 Calendrier de mise en œuvre

L’approbation de ce projet fera l’objet d’un nouvel arrêté interpréfectoral qui marquera le début de la phase opérationnelle de la démarche. Les décisions de la CLE deviendront alors la règle à appliquer et sa consultation sera incontournable pour tout projet d’aménagement et de gestion de la ressource en eau et des milieux aquatiques, envisagé sur le bassin du Célé.

<table>
<thead>
<tr>
<th>PHASE PRELIMINAIRE</th>
<th>01 Arrêté du périmètre d’élaboration du SAGE</th>
<th>15 novembre 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>02 Arrêté de composition de la CLE</td>
<td>16 janvier 2006</td>
</tr>
<tr>
<td>PHASE D’ELABORATION</td>
<td>03 Collecte des données, réalisation de l’état</td>
<td>Février 2006 -</td>
</tr>
<tr>
<td>CONCEPTION</td>
<td>des Lieux et détermination des manques</td>
<td>décembre 2006</td>
</tr>
<tr>
<td></td>
<td>04 Diagnostic global et définition des objectifs</td>
<td>Janvier - mars</td>
</tr>
<tr>
<td></td>
<td>05 Tendances et scénarios</td>
<td>Printemps 2007</td>
</tr>
<tr>
<td></td>
<td>06 Choix de la Stratégie</td>
<td>Été 2007</td>
</tr>
<tr>
<td></td>
<td>07 « Produits » du SAGE</td>
<td>Automne 2007</td>
</tr>
<tr>
<td>PHASE D’ELABORATION</td>
<td>08 Validation finale par la CLE</td>
<td>Hiver 2007 - 2008</td>
</tr>
<tr>
<td>VALIDATION</td>
<td>09 Consultation des Collectivités locales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Consultation du Comité de bassin</td>
<td>Hiver 2007 - 2008</td>
</tr>
<tr>
<td></td>
<td>11 Mise à disposition du public</td>
<td>Printemps 2008</td>
</tr>
<tr>
<td></td>
<td>12 Arrêté préfectoral d’approbation</td>
<td>Été 2008</td>
</tr>
<tr>
<td>PHASE DE MISE EN ŒUVRE</td>
<td>13 Mise en œuvre et Suivi</td>
<td>Automne 2008</td>
</tr>
<tr>
<td>ET DE SUIVI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1 : Etapes du SAGE « Bassin du Célé »
Projet de calendrier
1.3.3 Composition de la Commission Locale de l'Eau

Le SAGE est établi par une Commission Locale de l'Eau (CLE) qui veille par la suite à l’application des mesures et au respect des orientations qu’il a arrêtées.

Sur le bassin du Célé, cette assemblée comprend 56 membres répartis au sein de 3 collèges :
- 28 représentants des collectivités territoriales et des établissements publics locaux ;
- 14 représentants d’usagers, de propriétaires riverains, d’organisations professionnelles et d’associations ;
- 14 représentants de l’Etat et de ses établissements publics.

M. le Sous-Préfet de Figeac a procédé à l’installation de la CLE le 27 février 2006. Au cours de cette réunion, ont été élus le Président, les 4 vice-présidents et les 20 membres du bureau.

Président :
M. Martin MALVY – Président du Conseil Régional de Midi-pyrénées

Vice-présidents :
Mme Nicole PAULO – Conseillère Générale du Lot
M. François VERMANDE – Conseiller Général du Cantal
M. Bernard LABORIE – Maire de St Jean Mirabel
M. Antoine GIMENEZ – Président de la communauté de communes du Pays de Maurs

Membres du bureau :

Collège des élus :

M. le Président de la CLE et MM. et Mme les Vice-présidents

<table>
<thead>
<tr>
<th>Titulaires</th>
<th>Suppléants</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Jean LAPORTE – Maire de Sabadel Latronquière</td>
<td></td>
</tr>
<tr>
<td>M. Michel DELPECH – Maire de Marcilhac sur Célé</td>
<td></td>
</tr>
<tr>
<td>M. Fausto ARAQUE – Maire de Bagnac sur Célé</td>
<td></td>
</tr>
<tr>
<td>M. Lionel ROUCAN – Conseiller Régional d’Auvergne</td>
<td></td>
</tr>
<tr>
<td>M. Christian MONTIN – Pdt de la Communauté de Communes Entre Cère et Rance</td>
<td></td>
</tr>
<tr>
<td>M. Vincent LABARTHE – Pdt de la Communauté de Communes Causse-Ségala-Limargue</td>
<td></td>
</tr>
<tr>
<td>M. René MAGNE – Maire de Sauliac</td>
<td></td>
</tr>
<tr>
<td>M. Jean-Claude LACOMBE – Maire de Linac</td>
<td></td>
</tr>
<tr>
<td>M. Roger ESTIVAL – Maire de Maurs</td>
<td></td>
</tr>
<tr>
<td>M. Michel CASTANIER – Maire de Cassaniouze</td>
<td></td>
</tr>
</tbody>
</table>

Collège des usagers et socio-professionnels :

<table>
<thead>
<tr>
<th>Titulaires</th>
<th>Suppléants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mme Germaine SERIEYS – Chambre d’Agriculture du Cantal</td>
<td></td>
</tr>
<tr>
<td>M. Christian BERNAD – Pdt de l’Association pour l’Aménagement de la Vallée du Lot</td>
<td></td>
</tr>
<tr>
<td>M. Roland AGRECH – Pdt de l’Association des Moulins du Quercy Lot et Tarn et Garonne</td>
<td></td>
</tr>
<tr>
<td>M. Jean-Marie BORDES – CPIE de Haute Auvergne</td>
<td></td>
</tr>
<tr>
<td>M. Patrick RUFFIE – Pdt de la Fédération des AAPPMA du Lot</td>
<td></td>
</tr>
<tr>
<td>M. Serge RAFFY – Chambre d’Agriculture du Lot</td>
<td></td>
</tr>
<tr>
<td>M. Robert SOURSOU – Pdt de l’Association la sauvegarde du Célé</td>
<td></td>
</tr>
<tr>
<td>M. Jean-Pierre PICARD – Pdt de la Fédération de Chasse du Cantal</td>
<td></td>
</tr>
<tr>
<td>M. Marc ESSLINGER – Association Lot-Nature</td>
<td></td>
</tr>
<tr>
<td>M. Daniel MARFAING – Pdt de la Fédération des AAPPMA du Cantal</td>
<td></td>
</tr>
</tbody>
</table>

Collège des représentants de l’Etat :

M. le Directeur de la DIREN Midi-Pyrénées ou son représentant ;
M. le Délégué Régional de l’Agence de l’Eau de Rodez ou son représentant ;
M. le Chef de MISEN du Cantal ou son représentant ;
M. le Chef de MISE du Lot ou son représentant ;
M. le Délégué Régional du Conseil Supérieur de la Pêche de Midi-Pyrénées ou son représentant.
1.3.4 Groupes de travail

La Commission Locale de l’Eau a également créé quatre groupes de travail. Ces groupes de travail ont un rôle de proposition et de concertation locale. Ils examineront l’état des lieux du territoire, proposeront des objectifs de gestion de la ressource en eau et des milieux aquatiques et retranscriront ces objectifs sous formes de mesures réglementaires et opérationnelles qui seront examinées par la Commission Locale de l’Eau afin de les intégrer au contenu du SAGE.

- **Usages** – Pdt : M. Fausto ARAQUE (Maire de Bagnac sur Célé)
- **Milieux naturels** – Pdt : M. Daniel MARFAING (Pdt de la Fédération des AAPPMA du Cantal)
- **Gestion qualitative de la ressource en eau** – Pdt : M. Vincent LABARTHE (Pdt de la Communauté de Communes Causse-Ségala-Limargue)
- **Gestion quantitative de la ressource en eau** – Pdt : M. Jean – Claude LACOMBE (Maire de Linac)

Les groupes de travail sont composés d’élus, d’usagers et de techniciens membres de la Commission Locale de l’Eau. Toute personne ou structure ressource sera, en tant que besoin, associée à leurs travaux.

1.3.5 Elaboration du contenu du SAGE et animation de la CLE

Le SAGE Célé : à retenir !

La procédure administrative initiale du SAGE est à ce jour achevée :
- le périmètre d’étude du SAGE a été fixé par arrêté interpréfectoral le 15 novembre 2004 ;

Les quatre groupes de travail se sont réunis pour la première fois entre le 19 octobre et le 14 novembre 2006 et ont examiné l’État des lieux du territoire. Les remarques soulevées au cours de ces réunions sont intégrées dans ce document.
2 Contenu du rapport

2.1 Collecte des données

La réalisation d'un État des lieux pour un projet de SAGE, nécessite de prendre en compte toutes les activités du bassin versant, tous les acteurs et/ou utilisateurs de l’eau, ainsi que tous les milieux bénéficiant d’une protection spéciale. Pour chacun des milieux homogènes et chacun des usages sectoriels répertoriés sur le bassin du Célé, il s’agit de réaliser une analyse descriptive des données scientifiques objectives, des données légales s’y rapportant et des acteurs concernés.

Les données qui figurent dans l’État des lieux sont tirées des résultats d'études, inventaires et recherches effectuées sur le bassin hydrographique avant et pendant le Contrat de rivière Célé. Ces données ont été complétées en tant que de besoin par des informations ou des résultats d'études communiquées par les services de l'Etat et des collectivités territoriales ou des organismes partenaires (Parc naturel régional des Causses du Quercy, Chambres consulaires…). Rares sont les informations « à dire d’expert » qui figurent dans ce rapport. Elles ont toutefois parfois été prises en compte, par exemple quand elles confirmaient une tendance observée auparavant.

L’ensemble des informations recueillies s’est rarement avéré homogène (différence entre les régions ou les départements concernés, d’un syndicat de communes à un autre…). Un important travail d’adaptation, d’analyse et d’harmonisation des données a donc été nécessaire.

2.2 Exploitation des données

Les caractéristiques administratives et hydrographiques du territoire nous ont poussé à définir certaines règles générales quant à l'exploitation des données :

- Les données relatives aux communes non entièrement comprises dans le bassin versant du Célé, ont été traitées au prorata des surfaces communales incluses dans le périmètre d'étude.

Ex : Nombre d’habitants. Pour une commune dont 15 % de la surface est sur le territoire, 15 % des habitants de la commune ont été pris en compte.

Toutefois, nos connaissances du terrain nous ont parfois permis de préciser les informations.

Ex : Rejet d’une Station d’EPuration (STEP). Le point de rejet étant localisé précisément, on peut considérer que tous les rejets collectifs sont sur le bassin si la STEP est, elle-même située sur le bassin ; ou a contrario qu’il n’y a aucun rejet sur le bassin si la STEP est en dehors (et ceci indépendamment de la surface communale comprise dans le bassin).

- Les descriptions générales sont faites à l’échelle des régions naturelles (climat, géologie, pédologie…), tandis que les analyses plus fines sont souvent réalisées à l’échelle des sous bassins versant (qualité de l’eau, pollutions agricoles …) voire des communes pour les usages.

Fruit de cette étude le présent rapport qui constitue la première partie du SAGE est divisé en trois grands chapitres :

 - Chapitre 1 : Caractéristiques générales du bassin du Célé
 - Chapitre 2 : Connaissance de la ressource en eau et des milieux aquatiques
 - Chapitre 3 : Usages et fonctions de l’eau et des milieux aquatiques

Des annexes sont rassemblées à la fin de ce document. Elles comprennent : certaines données brutes ; un glossaire ; les références bibliographiques… Un document complémentaire accompagne ce rapport principal, il comprend un atlas cartographique (partie II) et les objectifs du SAGE (partie III).
2.3 Bilan du Contrat de rivière Célé

2.3.1 Qualité des eaux

<table>
<thead>
<tr>
<th>Points forts</th>
<th>Points faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nette amélioration de la qualité sanitaire des eaux à l’aval de Corn.</td>
<td>Accentuation des phénomènes de pollution sanitaire des eaux dans le Cantal (amont de Maurs et de St Constant).</td>
</tr>
<tr>
<td>Maintien d’une très bonne qualité hydrobiologique des eaux et d’une qualité physico-chimique bonne à acceptable.</td>
<td>Dégradation toujours très prononcée des eaux du Drauzou, du Célé en aval de St Constant et de Figeac, et de la Rance en aval de Maurs.</td>
</tr>
</tbody>
</table>

Commentaire général :
Malgré une nette amélioration de la qualité sanitaire des eaux (réapparition ponctuelle de mesures de qualité excellente à l’aval de Cabrerets), certains problèmes persistent, notamment en période post pluvio-orageuse.

Afin de palier les fluctuations de la qualité sanitaire des eaux, un système d’information journalier sur la qualité des eaux du Célé a été mis en place par le Conseil Général du Lot, en partenariat avec le Contrat de rivière Célé : l’inf’eau loisirs Célé. 2 stations de mesure équipées sur Figeac et St Sulpice analysent en continu la turbidité des eaux et permettent de renseigner dès 10 h, chaque jour, les usagers sur la tendance de la qualité des eaux pour les loisirs aquatiques.

2.3.2 Rejets domestiques

<table>
<thead>
<tr>
<th>Points forts</th>
<th>Points faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrivée du Défi Territorial en 2005 (bonification de certaines aides) : accélération des travaux.</td>
<td></td>
</tr>
</tbody>
</table>

Afin de palier les fluctuations de la qualité sanitaire des eaux, un système d’information journalier sur la qualité des eaux du Célé a été mis en place par le Conseil Général du Lot, en partenariat avec le Contrat de rivière Célé : l’inf’eau loisirs Célé. 2 stations de mesure équipées sur Figeac et St Sulpice analysent en continu la turbidité des eaux et permettent de renseigner dès 10 h, chaque jour, les usagers sur la tendance de la qualité des eaux pour les loisirs aquatiques.

2.3.2 Rejets domestiques

<table>
<thead>
<tr>
<th>Points forts</th>
<th>Points faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrivée du Défi Territorial en 2005 (bonification de certaines aides) : accélération des travaux.</td>
<td></td>
</tr>
</tbody>
</table>
Commentaire général :
2 communes sur les 101 du bassin n’ont pas réalisé leur zonage d’assainissement à ce jour. La réalisation de ces zonages, impulsée par les partenaires financiers et le Contrat de rivière Célé a permis de diagnostiquer les réseaux et les stations de traitement des eaux usées. Ces études ont très souvent mis en évidence la nécessité d’effectuer des travaux de réhabilitation ou de création des systèmes de traitement.

2.3.3 Rejets industriels

Points forts
- 4 entreprises (dont la plus importante du bassin) ont réalisé des travaux d’amélioration des traitements ou de sécurisation des rejets industriels.
- Les investissements réalisés ont été nettement plus importants que ceux programmés initialement.

Points faibles
- Il reste quelques points noirs notamment sur la commune de Bagnac sur Célé et du Rouget.
- Problème de rejets ponctuels de métaux lourds dans le réseau collectif de Figeac.

Commentaire général :
Le programme de dépollution industrielle est un réel succès. Reste toutefois deux points noirs à régler (rejets de deux entreprises) et la problématique non négligeable des rejets industriels en réseau collectif, lesquels font rarement l’objet d’une convention de rejets et qui posent régulièrement des problèmes au gestionnaire du réseau (présence de graisses dans les réseaux…).

2.3.4 Rejets agricoles

Points forts
- Lancement d’un programme de suppression des risques de pollution d’origine agricole.
- Succès et résultat des expérimentations (traitement des eaux blanches + points d’abreuvement).
- Bonnes relations et échanges avec les organismes professionnels.

Points faibles
- Opérations de sensibilisation (trop peu de participants).
- Délais de mise en place du Programme Agricole.
- Echec de la territorialisation du PMPOA2.

Commentaire général :
Les modifications de programmes de mesures à l’échelle nationale (fin des CTE, PMPOA 2 …) n’ont pas permis de lancer un programme de dépollution agricole au démarrage du Contrat. Le programme de lutte contre les risques de pollution d’origine agricole n’est intervenu qu’en fin de contrat. Ses résultats sont encourageants même s’il n’a fédéré à ce jour qu’environ 70 agriculteurs (soit 5 %).
2.3.5 **Restauration des berges et des milieux aquatiques**

Points forts
- Réorganisation des syndicats de rivières au profit des Communautés de communes.
- 75 km de berges restaurées en 5 ans (Célé et Drauzou).
- 3 Techniciens de rivière en place sur le territoire, rattachés aux communautés de commune de Figeac-Cajarc et du Pays de Maurs et au Syndicat mixte d'aménagement et de gestion du Parc naturel régional des Causses du Quercy. Partenariat fructueux avec ces trois structures.

Points faibles
- Du retard dans les travaux (Cantal).
- Seul le Célé et le Drauzou ont pu être diagnostiqués à ce jour (Rance en cours).
- Des territoires n’ont pas intégré la démarche (communauté de communes du Haut Ségala, communauté de communes Causse-Ségala-Limargue, Commune du Triolou).
- Disparition des fonds d’État et d’Europe et modification des conditions d’éligibilité (la restauration de berges par des techniques de génie végétal n’est plus éligible).

Commentaire général :

Les travaux de restauration des berges du Célé ont été menés par les Communautés de communes du territoire, encadrés par les 3 techniciens de rivières et ceux du Contrat de rivière. Ces travaux ont tous fait l’objet d’une Déclaration d’Intérêt Général. 1 080 000 € HT d’interventions ont été réalisées. Aucune action n’a par contre pas été lancée sur les affluents du Célé (à l’exception du Drauzou).

Les délais de réalisation ont rarement été respectés. Ceci peut être attribué à la fois aux démarches administratives complexes (consultations, procédures de DIG, découpages territoriaux) et aux coûts élevés de ces programmes (découpage en tranches par les maîtres d’ouvrage). Une autre organisation (réalisation des travaux par un syndicat regroupant toutes les communes) a donc été demandée et est à l’étude.

2.3.6 **Préservation et mise en valeur des milieux naturels**

Points forts
- 4 chaussées équipées en passes à poissons et/ou canoës et 1 programmée. Traversée de Figeac (canoës et poissons) : possible.
- Remontée des poissons depuis le Lot et sur le Bervezou : possible.
- Elaboration et application du Schéma d’Aménagement Nautique et de pêche comprenant 14 aires d’embarquement publiques, 2 aires de pêche, 5 pontons de pêche handicapé, 1 parcours de pêche no-kill.

Points faibles
- Lacatusse, Anès, Ste Eulalie impossibilité d’intervention (équipement ou destruction).
- Remontée sur le Veyre, la Rance, le Drauzou : toujours très difficile. Remontée du poisson sur le Célé (Cantal) impossible.

Commentaire général :

La mise en œuvre et l’animation d’une Charte de conciliation des usages et d’un schéma d’aménagement nautique ont permis d’initier de nombreux travaux d’aménagement et de valorisation des milieux naturels qui n’étaient pas programmés initialement. Toutefois l’intérêt de ces équipements (ex : aires de pêche ou d’embarquement) dépend des structures maître d’ouvrage et leur qualité de réalisation fluctue donc aussi tout au long de la rivière. Par ailleurs, l’absence d’entretien de certains équipements menace leur pérennité.
L’absence de connaissances sur le fonctionnement et les richesses des milieux humides et des habitats remarquables du bassin du Célé est à l’origine du lancement de deux études (zones humides et espèces patrimoniales) qui doivent permettre d’établir des programmes de préservation et de gestion de ces espaces à l’avenir.

2.3.7 Animation, information, sensibilisation

Points forts
- Un programme d’animations scolaires qui a touché plus de 2000 enfants (187 journées).
- 1 panel d’outils de communication (plaquettes, posters, expositions, BD…) à destination du grand public.
- Une charte de conciliation des usages en vigueur et qui fonctionne bien.
- Des échanges constructifs, en confiance avec les représentants d’usagers.

Points faibles
- Une mobilisation des partenaires : Education Nationale, Intervenants spécialisés,…
- Une fréquence insuffisante de sortie des bulletins d’information.
- Des difficultés à toucher le grand public (public ciblé = usagers et leurs représentants).

Commentaire général :
L’animation, la communication et la sensibilisation effectuées durant le Contrat de rivière, en interne ou par les prestataires associés (ex : éducateurs à l’environnement) ont permis de créer des liens et de faire émerger de nombreux projets notamment de valorisation des rivières et des milieux aquatiques.

2.3.8 Études

Études réalisées au cours du Contrat, en interne ou par un prestataire extérieur :
- Étude sur l’amélioration de la qualité paysagère de la vallée du Célé ;
- Étude d’inventaire et de caractérisation des zones humides ;
- Étude sur la gestion et la protection des espèces patrimoniales du bassin du Célé ;
- Étude d’inventaire et de caractérisation des chaussées du bassin du Célé ;
- Étude sur les risques de pollution d’origine agricole ;
- Schéma d’Aménagement Nautique et de Pêche.
- Étude sur le patrimoine médiéval
- Plan de gestion des milieux aquatiques et alluviaux

2.3.9 Bilan financier

Le montant initial du programme était de 33 550 000 € HT. En 2004, 10 700 000 € HT de travaux avaient vu le jour, soit 32 % de l’enveloppe estimée. En 2005 et 2006, plus de 11 500 € HT de travaux ont été réalisés ou sont en cours (assainissement sur Maurs, Figeac, St Constant ; travaux de restauration des berges du Célé côté Cantal…). Fin 2006, 22 200 000 € HT de travaux ont donc été effectués soit 66 % du programme initial (79 % si l’on exclut les travaux de réhabilitation de la STEP de Figeac dont les études sont en cours). Les principaux programmes de travaux ont été entrepris et certaines actions non prévues ont été rajoutées en cours de procédure. La mise en œuvre d’un programme de dépollution agricole et d’actions en faveur des milieux humides n’a été possible qu’en fin de Contrat, ce qui explique encore le manque d’intervention dans ces secteurs.

Globalement, les partenaires et membres du Comité de rivière Célé semblent satisfaits du degré de réalisation du programme du Contrat de rivière Célé.
CHAPITRE 1 : CARACTERISTIQUES GENERALES DU BASSIN DU CELE

1 Présentation du territoire

Le bassin du Célé appartient au bassin Adour - Garonne et s’étend des contreforts du massif central aux Causses du Quercy.

1.1 Situation géographique

Le bassin versant du Célé se situe à la frontière entre les régions Midi-Pyrénées et Auvergne. Il s’étend approximativement entre les villes d’Aurillac et Cahors, sur les départements du Lot au sud ouest et du Cantal au nord est, en passant par l’Aveyron. La figure 2 ci-contre ainsi que la carte 1 de l’atlas cartographique illustrent cette situation géographique.

Le Célé prend sa source sur la commune de Calvinet, à 715 m d’altitude. Après un écoulement calme, il traverse des gorges jusqu’à Saint Constant, puis s’écoule dans des prairies. Du Trioulou à Figeac, il suit une vallée “encaissée” et ombragée, caractéristique des vallées profondes entaillées dans les roches cristallines du Ségala.

Après avoir parcouru une plaine relativement ouverte entre Figeac et Boussac, il s’enfonce entre les hautes falaises calcaires qu’il a modelées entre les Causses de Gramat et de Gréalou, jusqu’à sa confluence avec le Lot en amont de Bouziès, à environ 130 m d’altitude.

Figure 2 : Situation géographique du bassin du Célé

1.2 Caractéristiques climatiques

Le bassin versant du Célé est soumis à deux influences climatiques : l’influence atlantique à l’ouest, qui se manifeste par des précipitations essentiellement hivernales, et l’influence montagnarde, qui s’accompagne d’une augmentation des précipitations, notamment neigeuses dans le haut bassin (climat de type océanique dégradé).

- La pluviométrie moyenne est nettement plus élevée dans la partie orientale du bassin (1 000 à 1 300 mm par an dans le nord du Ségala) que dans le secteur des Causses : 900 à 1 000 mm par an sur le Causse de Gramat, 800 à 900 mm par an sur le Causse de Gréalou. Cette différence dans la pluviométrie moyenne est illustrée par la carte 2 de l’atlas cartographique.

Sources :
Selon les données fournies par Météo France, le total des précipitations annuelles à Figeac s’élève à 932 mm. Leur répartition mensuelle apparaît assez régulière : elles s’échelonnent entre 52,4 mm en juillet et 104 mm en mai. Cette régularité caractérise également les précipitations enregistrées dans le haut bassin, qui varient entre 65 mm en juillet et 126 mm en mai à Marcolès, pour un total annuel de 1 242 mm.

Sur la majeure partie du bassin versant, les mois d’octobre et de mai connaissent des précipitations très importantes, voire des maxima annuels, qui marquent ainsi brutalement le début et la fin de la saison humide.

- **Les températures** traduisent les influences climatiques précédemment évoquées avec des moyennes thermines annuelles assez douces dans la vallée à l’aval de Maurs et sur les Causses (plus de 12°C), comprises entre 10 et 12°C dans la majeure partie du Ségala, entre 8 et 10°C en limite nord-est du bassin.

A titre de comparaison, les moyennes annuelles des températures s’élèvent à 11,9°C à Figeac et 9,8°C à Marcolès. Les moyennes mensuelles sont comprises, pour ces deux postes, entre respectivement 4,3°C en janvier et 20,5°C en juillet ; 2,4°C et 18°C.

Les conditions climatiques plus rudes dans le haut du bassin se traduisent par les phénomènes suivants :
- des précipitations neigeuses rares à Figeac (6 jours / an, de novembre à avril), nettement plus fréquentes dans le Cantal (30 jours / an à Marcolès) ;
- 64 jours de gel / an en moyenne à Figeac, contre 80 jours à Marcolès.

1.3 Réseau hydrographique

Sources :

Étude sur l’amélioration de la qualité des eaux du Célé - SIEE, 1994

- **Le Célé et ses affluents**

Principal affluent en rive droite du Lot après la Truyère, le Célé s’écoule sur 101 km selon une direction globale est / ouest dans le Cantal puis nord-est/sud-ouest dans le département du Lot. Il est alimenté par près de 790 km de cours d’eau (soit au total plus de 1000 km de tronçons hydrographiques) qui drainent un bassin de 1 249 km². Parmi ses principaux affluents, on peut citer (d’amont en aval) : la Ressègue, la Rance, le Veyre, le Bervezou, le St Perdoux, le Drauzou et la Sagne.

Le réseau hydrographique est très dense dans la moitié amont du bassin versant du Célé, c’est-à-dire dans les terrains cristallins et cristallophylliens du Ségala et de la Châtaigneraie et dans les marnes du Limargue, qui jouent le rôle de véritable château d’eau. La Rance, le ruisseau de Montmarty, la Ressègue, le Veyre, le Bervezou, le Saint Perdoux et le Drauzou sont situés en rive droite du Célé ; seuls les ruisseaux d’Aujou et d’Enguirande s’écoulent en rive gauche. À l’amont, la Rance revêt une importance particulière, drainant un bassin versant de 280 km² (contre 120 km² pour celui du Célé à l’amont de la confluence avec la Rance). Elle possède quelques affluents d’importance non négligeable : le Moulègre, l’Anès et l’Arcambe.

Dans la moitié aval du bassin (aval de Boussac), la vallée encaissée du Célé traverse les Causses du Quercy, aux écoulements intermittents, qui se perdent pour réapparaître plus loin. Le Célé y est pratiquement dépourvu d’affluents, mais alimenté par des sources provenant d’infiltrations dans le sous-sol karstique, dont le cheminement est encore parfois incertain. Seule la Sagne, au droit de Cabrerets, présente une certaine importance.

Les Causses de Gréalou et surtout de Gramat sont le siège d’importantes circulations d’eau souterraines (système karstique) dont les multiples résurgences pérennes alimentent le Célé. Les plus importantes sont d’amont en aval : la fontaine de Bullac, la source de Corn, la Diège, la Font-del-Pito, le Ressel et la Pescalerie.
Le réseau hydrographique superficiel est représenté sur la carte 3 de l’atlas.

Les sous – bassins hydrographiques

La BD CarThAge® découpe le bassin du Célé en 14 sous bassins hydrographiques. Ces sous bassins sont représentés sur la carte 4 de l’atlas. Pour simplifier la lecture du rapport, il a été choisi de rendre plus explicite le nom de certains sous bassins en faisant références aux affluents. Ces noms sont indiqués dans le tableau 2 ci-dessous.

<table>
<thead>
<tr>
<th>Numéro</th>
<th>dénomination</th>
<th>Nom utilisé dans ce rapport</th>
</tr>
</thead>
<tbody>
<tr>
<td>0833</td>
<td>Célé 1</td>
<td>Basse vallée du Célé</td>
</tr>
<tr>
<td>0832</td>
<td>Drauzou</td>
<td>Drauzou</td>
</tr>
<tr>
<td>0831</td>
<td>Célé 2</td>
<td>Célé-St Perdoux</td>
</tr>
<tr>
<td>0830</td>
<td>Laborie</td>
<td>Bervezou</td>
</tr>
<tr>
<td>0929</td>
<td>Célé 3</td>
<td>Célé-Enguirande</td>
</tr>
<tr>
<td>0828</td>
<td>Veyre</td>
<td>Veyre</td>
</tr>
<tr>
<td>0827</td>
<td>Célé 4</td>
<td>Célé-Aujou</td>
</tr>
<tr>
<td>0826</td>
<td>Rance 1</td>
<td>Rance-Arcambe</td>
</tr>
<tr>
<td>0825</td>
<td>Anès</td>
<td>Anès</td>
</tr>
<tr>
<td>0824</td>
<td>Rance 2</td>
<td>Gorges Rance</td>
</tr>
<tr>
<td>0823</td>
<td>Moulègre</td>
<td>Moulègre</td>
</tr>
<tr>
<td>0822</td>
<td>Source Rance</td>
<td>Source Rance</td>
</tr>
<tr>
<td>0821</td>
<td>Célé 5</td>
<td>Célé-Resssegue</td>
</tr>
<tr>
<td>0820</td>
<td>Source Célé</td>
<td>Source Célé</td>
</tr>
</tbody>
</table>

Tableau 2 : Découpage du bassin du Célé en 14 sous bassins versants

Sources : Agence de l’Eau Adour – Garonne

Les études accomplies par le contrat de rivière, depuis 5 ans, ont toutes été basées sur ce découpage (diagnostic agricole, analyse de qualité d’eaux, ...)

Les masses d’eau

La directive définit cinq catégories de M.E. :
- les cours d’eau,
- les lacs de plus de 50 hectares
- les eaux côtières,
- les eaux de transition,
- les eaux souterraines.

Une masse d’eau de rivière se définit comme une portion significative de cours d’eau, continue d’un point de vue hydrographique, et homogène du point de vue de ses caractéristiques naturelles et des pressions anthropiques qu’elle subit.

De ce système, résulte un découpage linéaire des principaux cours d’eau du bassin du Célé en 9 masses d’eau de rivière (carte 4). Le découpage en masses d’eau des autres affluents et du chevelu est en cours.
Les pentes du Célé à sa source et de ses principaux affluents sont toutes comprises entre 15 et 25 %, avec des pentes maximales sur les sources du Célé et sur l’Anès. A partir de sa confluence avec la Ressègue la pente du Célé diminue fortement et passe à moins de 3 %. Le relief du bassin versant est représenté sur la carte 5 de l’atlas.

Afin de mieux les situer et pour pouvoir les corrélérer avec les sous bassins versants, nous proposons dans le tableau ci-dessous (et à titre indicatif) une correspondance entre les 14 sous bassins et les 9 masses d’eau.
1.4 Caractéristiques géologiques et pédologiques

La géologie du bassin versant du Célé, illustrée par la carte 6, est caractérisée par la succession spatiale de trois grands types de terrains.

- Dans sa partie amont, à l’est de Figeac, le sous-sol est constitué successivement d’est en ouest de roches plutoniques et métamorphiques (granites et leucogranites), et de formations cristallophylliennes anciennes, essentiellement micaschisteuses. Cet ensemble constitue respectivement les régions naturelles de la Châtaigneraie et du Ségala. Ces terrains sont imperméables, ce qui explique le réseau hydrographique très dense qui s’y est développé.

- Les terrains secondaires les plus anciens (marnes du Trias et du Lias) constituent la région du Limargue, zone de transition entre le Quercy à l’ouest et le Ségala à l’est. Ses affleurements, essentiellement marneux et argileux expliquent la douceur et la régularité du modèle, car peu résistant à l’action érosive. Toutefois il comprend également des strates calcaires qui, du fait de la plus grande résistance à l’érosion, peuvent donner un modèle plus accidenté (vallées du Célé et du Drauzou).

- La partie aval du bassin versant, à l’ouest de Figeac, repose sur des sédiments calcaires, dont les plus anciens affleurent en bordure est de la zone (Lias). Ces terrains du Jurassique ont donné naissance aux formations tabulaires des Causses du Quercy. Les sols, peu évolués, laissent apparaître la roche mère sur de vastes surfaces. Le socle est composé d’une plate forme de grès, dolomies et argiles, sur laquelle se sont déposées des formations marno-calcaires.

Entre ces grandes formations géologiques se sont intercalées, au gré des dépressions, des formations diverses : schistes et grès de la sédimentation houillère du Carbonifère au nord de Figeac, molasses et calcaires de l’Oligocène dans les secteurs de Montredon, Saint-Santin-de-Maurs et Maurs.

D’un point de vue pédologique, sur l’ensemble du bassin versant du Célé, tout type de sol peut être rencontré du fait de la présence des terrains géologiques hétérogènes sous jacents. Cependant on peut noter que dans la région des Causses le sol est peu profond, ce qui est dû à la grande résistance de la roche mère vis-à-vis de l’érosion. Les sols peu évolués et pauvres laissent apparaître la roche mère sur de vastes surfaces.

A l’opposé, les sols du Ségala et de la Châtaigneraie peuvent être très profonds et sont acides. Les sédiments y sont de type argileux ce qui confère à cette région son caractère imperméable. Entre les deux, dans la région du Limargue, on rencontre des sols marneux, généralement de profondeur moyenne.

1.5 Occupation du sol

La base de données Corine Land Cover, gérée par l’IFEN, fournit des informations géographiques sur l'occupation des terres. Les données de 2000 ont été extraites à partir d'images satellitaires de 2000. La superficie minimale cartographiée est de 25 ha pour l'occupation du sol et de 5 ha pour les changements d'occupation. 44 types d'occupation sont utilisés dans la base de données ; ils ont été regroupés en 7 grands types pour l'analyse qui suit.
La forêt de feuillus est l’occupation dominante du territoire : elle couvre 35 % du territoire du bassin. Viennent ensuite les prairies qui représentent 23 % du territoire, puis les systèmes agricoles non homogènes. La figure 3 ci-dessous schématisse la répartition de l’occupation du sol sur le territoire. Ce graphique est issu des données de la carte 7 de l’atlas qui représente l’occupation du sol sur le territoire d’après Corine Land Cover.

D’après ces données, entre 1990 et 2000, l’occupation du sol a peu évolué : 7 ha de prairies ont été urbanisés au nord de Figeac, 11 ha de forêts ont été défrichés et converties en prairies, sur la commune de Prendeignes.

Enfin, la dégradation de 765 ha de forêt (passage de la forêt à une végétation arbustive ou herbacée avec arbres épars), sur les causses essentiellement, a été compensée par la recolonisation par les feuillus sur 775 ha. 9 ha ont été plantés en conifères.

Ces données globales masquent l’hétérogénéité du territoire :

Le Ségala et la Châtaigneraie, aux sols acides et aux précipitations abondantes, restent des régions à la fois forestières (où dominent hêtres, chênes pédonculés et châtaigniers) et pastorales, avec de nombreuses prairies naturelles destinées à l’élevage de bovins (prairies et zones agricoles hétérogènes).

Le Limargue, région essentiellement marneuse, a le plus faible taux de boisement du département. Ses terres riches en font une zone agricole fortement développée avec des cultures (terres arables) et prairies.

Dans les Causses apparaît une végétation plus xérophile avec des bois de chênes verts et de chênes pubescents, auxquels viennent s’ajouter les landes (milieu à végétation arbustive et herbacée). Les formations boisées (souvent des parcours à moutons) occupent près de 40 % du territoire. Dans les dépressions argileuses (vallées sèches et dolines), l’élevage ovin des plateaux fait place à une polyculture vivrière (zones agricoles hétérogènes et terres arables).
1.6 Patrimoine culturel et paysager

Comme le montre la description géologique du territoire, le bassin du Célé est situé à la frontière entre une zone montagneuse, le massif central, et une zone de plateaux calcaires. Ceci en fait une zone charnière avec des richesses naturelles caractéristiques de ces milieux, et des espèces souvent en limite de zone de répartition (Moule perlière, Lézard ocellé…). Ces richesses seront détaillées dans la partie 4 du chapitre 2, nous nous attacherons ci-dessous à décrire le patrimoine culturel et paysager.

1.6.1 Partie amont du bassin du Célé

En Châtaigneraie et Ségala on rencontre essentiellement un paysage de collines. Le réseau hydrographique y a disséqué le relief, ce qui rend la topographie généralement complexe (multitude d’expositions, pentes plus ou moins marquées). Ces collines sont alternativement recouvertes de prairies ou de cultures et de grandes forêts sur les pentes ou les "sommets". Les arbres sont omniprésents dans ces paysages sous forme de réseau de haies (bocage) ; en raison de ces boisements et du relief de collines, les vues et les panoramas sont très souvent entrecoupés.

Dans le Limargue le relief est moins accidenté, les cultures plus présentes et les forêts moins développées. Le faciès bocager y est très marqué et la vue est généralement courte. Cette région de collines douces et verdoyantes contraste autant avec la sécheresse pierreuse du Causse qu’avec les sombres élévations du Ségala.

Architecturalement, ces deux pays ont pour point commun un mélange de constructions de type montagnard (toits de Lauze assez pentus) et de type méditerranéen (toits recouvert de tuiles canal). Ces toitures, les constructions agricoles annexes (sécadous…) et les jeux de pierre plutôt sombres et massifs font la notoriété du bâti traditionnel.

1.6.2 Partie aval du bassin du Célé

La partie aval du bassin du Célé est occupée par des reliefs karstiques typiques, taraudés par d’innombrables cloups (dolines) et igues (gouffres). Sur ces plateaux secs et pierreux, les pelouses sèches pâturées et les bois de chênes pubescents sont entrecoupés de murets en pierre sèche. De nombreuses cazelles, petites cabanes rondes ou carrées et bâties entièrement en pierre, parsèment le paysage.

L’habitat de la basse vallée du Célé frappé par la qualité de son architecture : il est caractérisé par des bâtisses de pierre calcaire, allant du gris clair à l’ocre les toits à deux pentes sont faits de petites tuiles plates brun-rouges.
1.6.3 Vallée du Célé

- **Amont de Figeac**
 Sur sa partie cantalienne, la vallée du Célé est encaissée entre des versants pentus et boisés (essentiellement des chênaies et châtaigneraies avec présence d’acacias et de quelques résineux) laissant peu de place aux cultures dans les fonds de vallée.

De Maurs à Figeac, la vallée du Célé est empruntée par la RN 122 et la voie du chemin de fer. Elle constitue un axe de circulation majeur reliant Cantal et Lot.

- **Aval de Figeac**
 C’est un peu en aval de Figeac, lorsqu’il n’est plus qu’à 180 m d’altitude, que le Célé entre dans la basse vallée, creusée dans les Causses calcaires.

De forme assez resserrée, elle dévoile un profil longitudinal sinuex (où de petits méandres tendent à se former) qui s’étend sur une cinquantaine de kilomètres jusqu’à la confluence. Riche de terres alluviales fertiles, le fond de vallée, essentiellement agricole, est assez réduit, avec des parcelles qui s’étirent le long des rivières, la route dans les endroits les plus larges (maïs, prairies, luzerne, céréales, tabac et carrés de vignes sous forme résiduelle).

Les terrasses habitées et cultivées sont, elles aussi, généralement assez restreintes. Le bâti se réfugie volontiers sur les ressauts du relief, s’étirant le long des parois, sous forme de hameaux et de “villages rue”, tel que Saint Sulpice, Sauliac-sur-Célé, Cabrerets.

Perchés le plus souvent à mi-falaise, d’accès parfois difficile, les châteaux dits “des Anglais”, ponctuent le paysage. L’époque médiévale a fortement marquée la vallée, dominée par une architecture épique de forts, de châteaux, de tours, d’églises, de castrums. Un Schéma d’Interprétation du Patrimoine médiéval est en cours. Il a pour objectif de recenser ces richesses patrimoniales afin de les valoriser.

![La vallée du Célé à Cabrerets](image)

Présentation du territoire : à retenir !

Le périmètre du SAGE couvre près de 1250 Km², des contreforts du massif central aux causses du quercy.

Le territoire est plutôt "naturel" avec un taux de boisement important et beaucoup de prairies.

Le bassin amont, caractérisé par des collines verdoyantes découpées par de nombreuses vallées encaissées, contraste avec le bassin aval où seul le Célé crée une vallée profonde dans le plateau calcaire, couvert de prairies sèches et de forêts.
2 Contexte humain et économique

2.1 Découpages administratifs et démographie

- Situation administrative
Le bassin versant du Célé est à cheval sur trois départements (Lot, Cantal et Aveyron) et deux régions (Midi-Pyrénées et Auvergne). Le périmètre du SAGE comprend 101 communes ; 72 dans le Lot, 28 dans le Cantal et 1 en Aveyron. Cette situation administrative est illustrée par la carte 8.

Ces 101 communes sont regroupées en 10 communautés de commune (CdC), dont :
- 6 dans le Lot :
 - CdC Lot-Célé
 - CdC Figeac-Cajarc
 - CdC de la Vallée et du Causse
 - CdC du Haut Ségala
 - CdC Causse Ségala Limargue
 - CdC du Causse de Labastide-Murat
- 3 dans le Cantal :
 - CdC du Pays de Montsalvy
 - CdC du Pays de Maurs
 - CdC Cère et Rance en Châtaigneraie
- Et 1 dans l’Aveyron :
 - CdC de la Vallée du Lot

Seules 4 communes ne sont pas rattachées à une communauté. Il s’agit de Gorses, Gréalou, Labastide du Haut-Mont et Montmurat.

- La population du bassin

5 communes seulement ont plus de 1 000 habitants et représentent 40 % de la population du bassin. Ceci reflète la répartition hétérogène de la population. Parmi celles-ci Figeac, avec près de 10 000 habitants, et Maurs, avec plus de 2 000 habitants, sont les deux principales communes du bassin.

<table>
<thead>
<tr>
<th>Départements</th>
<th>Communes</th>
<th>Superficie dans le Bassin (km²)</th>
<th>Population dans le Bassin</th>
<th>Densité moyenne de population (hab./km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot (dont Figeac)</td>
<td>72 (1)</td>
<td>849,17 (30,24)</td>
<td>21 461 (8 249)</td>
<td>25 (16 sans Figeac) (273)</td>
</tr>
<tr>
<td>Cantal (dont Maurs)</td>
<td>28 (1)</td>
<td>395,29 (30,84)</td>
<td>9 123 (2 252)</td>
<td>23 (19 sans Maurs) (73)</td>
</tr>
<tr>
<td>Aveyron</td>
<td>1</td>
<td>4,10</td>
<td>96</td>
<td>23</td>
</tr>
<tr>
<td>Total Bassin</td>
<td>101</td>
<td>1 248,57</td>
<td>30 680</td>
<td>24,6</td>
</tr>
</tbody>
</table>

Tableau 5 : Répartition de la population sur le bassin versant du Célé

Les chiffres entre parenthèses correspondent aux caractéristiques des villages de Figeac et de Maurs.

La densité moyenne est de 24,6 habitants/ km², ce qui est faible par rapport à la moyenne nationale (108 habitants/km²) et en dessous des moyennes départementales du Lot (31 habitants/km²) et du Cantal (26 habitants/km²).
L'analyse du recensement révèle, de plus, que la population du bassin est assez âgée, puisque les plus de 60 ans représentent 33,5 % de la population contre seulement 21,3 % en France. Cette tendance va probablement se renforcer, les nouveaux arrivants étant principalement des retraités ou autres inactifs.

Il est aussi intéressant de noter que la proportion de logements secondaires et occasionnels est deux fois plus importante sur le bassin versant du Célé qu'en France.

Découpage administratif et démographie : à retenir !

Le territoire comprend 101 communes réparties entre 3 départements et deux régions.

Seules deux villes de plus de 2 000 habitants sont présentes sur le territoire : Figeac et Maurs. En dehors de ces communes, la densité de population est très faible.

La proportion de logements secondaires et occasionnels est deux fois plus importante sur le bassin versant du Célé qu'en France.

2.2 Activités économiques

2.2.1 Activités agricoles

Sources : Recensement Général agricole - Agreste, 2000

Les activités du bassin du Célé sont encore fortement marquées par l’agriculture. En effet, les agriculteurs représentent 17 % de la population active sur le bassin du Célé et le secteur agricole emploie 18,5 % de la population active. Ces chiffres sont très élevés par rapport aux moyennes nationales (respectivement moins de 3 % et 4%).

Il y a 1 682 exploitations agricoles dont 1024 exploitations professionnelles sur le bassin. Les productions principales sont les bovins et les ovins.

L’analyse des données du Recensement Général Agricole (RGA) de 2000 a permis de mettre en évidence les caractéristiques générales de l’agriculture sur le bassin et de les comparer aux données nationales :

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Bassin du Célé</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAU / Surface totale</td>
<td>55 %</td>
<td>53 %</td>
</tr>
<tr>
<td>SAU moyenne des exploitations</td>
<td>45 ha</td>
<td>42 ha</td>
</tr>
<tr>
<td>SFP / SAU</td>
<td>43 %</td>
<td>91 %</td>
</tr>
<tr>
<td>STH / SFP</td>
<td>28 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Surface en céréales / SAU</td>
<td>30 %</td>
<td>8 %</td>
</tr>
<tr>
<td>% d’exploitations produisant des bovins</td>
<td>42 %</td>
<td>56 à 58 % ³</td>
</tr>
<tr>
<td>% d’exploitations produisant des ovins</td>
<td>14 %</td>
<td>31 à 32 %</td>
</tr>
<tr>
<td>% d’exploitations produisant des porcins</td>
<td>9 %</td>
<td>18 à 20 %</td>
</tr>
<tr>
<td>Agriculteurs de < 40 ans</td>
<td>26 %</td>
<td>23 à 24 %</td>
</tr>
<tr>
<td>% d’exploitants individuels</td>
<td>81 %</td>
<td>88 %</td>
</tr>
</tbody>
</table>

Tableau 6 : Caractéristiques générales de l’agriculture du bassin

³ Pour tenir compte du secret statistique (pas de données quand il y a 1 ou 2 individus) deux calculs ont été effectués : un en considérant que les chiffres cachés sont égaux à 1 et un en considérant qu’ils sont égaux à 2
• Description générale
 D’après le tableau 6, les caractéristiques marquantes de l’agriculture du bassin du Célé sont :
 - une plus grande part d’exploitations avec des productions animales que sur l’ensemble de la France ;
 - une proportion de céréales presque quatre fois plus faible que la moyenne nationale ;
 - une part très importante de fourrages et une Superficie Toujours en Herbe importante ;
 - moins de jeunes agriculteurs et moins d’exploitations en société, ce qui peut être signe d’un manque de dynamisme de l’agriculture et laisser présager une diminution du nombre d’exploitations.

• Evolution

 Par contre, entre 1979 et 2000, quel que soit le type de productions, le nombre d’exploitations a diminué (de 40 à 45 %, sauf dans Cantal où la diminution a été de 36 %). Dans le même temps, les effectifs d’animaux et la surface moyenne des exploitations ont augmenté : de 70 à 75 % pour la SAU moyenne selon les régions. Ces évolutions vont bien dans le sens de l’augmentation de la taille des exploitations agricoles que l’on peut observer partout en France. Globalement, les chargements en bovins, caprins, ovins et porcins ont diminué entre 1988 et 2000, ils sont passés de 1,78 à 1,71 UGB/ha de SAU. Cette diminution est due à une diminution du chargement en porcins qui fait plus que compenser l’augmentation consécutive du chargement en bovins.

• Description par région naturelle
 La description générale ci-dessus masque des différences importantes d’activités entre les 3 régions naturelles.

 Sur le Causses, la SAU totale est très faible car il y a beaucoup de forêts. L’agriculture est très orientée vers l’élevage ovin (51 % des exploitations). Les exploitations ont en général une SAU importante et la Superficie Toujours en Herbe (STH) est très élevée car l’élevage ovin est fortement basé sur le pacage (prairies et parcours). La production de céréales y est la plus importante du bassin ; il s’agit surtout de maïs et d’orge d’hiver et de printemps, cultivés essentiellement dans la vallée du Célé.

 En Limargue, les productions principales sont les bovins et les ovins. La SAU moyenne par exploitation est plus faible que dans les Causses. L’élevage est aussi basé sur le pacage (STH importante), mais le chargement est plus important.

 Dans le Ségala, il y a très peu de céréales. La production dominante est l’élevage de bovins viande, l’élevage laitier représente 38 % des effectifs de bovins. Les effectifs moyens d’animaux sont plus importants que dans les autres régions et la SAU moyenne par exploitation plus faible. L’alimentation des animaux est davantage basée sur les fourrages récoltés que dans les autres régions (STH plus faible).

 Les caractéristiques sont assez semblables pour la Châtaigneraie. Il y a cependant plus d’élevage laitier (45 % des effectifs de bovins) que sur le Ségala et moins d’exploitations produisant des ovins ; la production de porcs y est par contre la plus importante du bassin.

2.2.2 Activités industrielles

Sources :
Recensement de la population, INSEE, 1999

L’ensemble du bassin du Célé est caractérisé par une industrialisation très faible, la plupart des établissements industriels étant concentrés sur les communes de Maurs, Figeac et Bagnac-sur-Célé.
Comme le montre le tableau 7, le secteur industriel emploie proportionnellement moins d’actifs que la moyenne française : 16,35 % contre 18,36 %. Par contre le secteur de la construction représente une part plus importante des actifs que sur l’ensemble du territoire national : 6,69 % sur le bassin du Célé et 5,83 % en France.

<table>
<thead>
<tr>
<th>Activité économique</th>
<th>Bassin du Célé</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICULTURE</td>
<td>18.50%</td>
<td>4.12%</td>
</tr>
<tr>
<td>INDUSTRIE</td>
<td>16.35%</td>
<td>18.36%</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>6.69%</td>
<td>5.83%</td>
</tr>
<tr>
<td>TERTIAIRE</td>
<td>58.47%</td>
<td>71.70%</td>
</tr>
</tbody>
</table>

Tableau 7 : Répartition de la population active selon les catégories socioprofessionnelles

On trouve essentiellement
- des industries agroalimentaires : conserveries, laiteries, salaisonneries, triperies (surtout dans le Cantal)
- des ateliers de traitement de surface (à Figeac et Bagnac)
- des centrales à béton (à Figeac)
- une carrière (à Bagnac)
- des blanchisseries (hôpital et lycée Champollion).

Sur le bassin du Célé, 11 industries sont soumises à la redevance de l’Agence de l’eau, elles sont reparties comme suit :
- secteur agroalimentaire : 5
- mécanique ou de traitement de surface : 3
- commerces ou services : 2
- Industrie extractives : 1

L’analyse détaillée des usages de l’eau par les industries figure au chapitre 3.

2.2.3 Activités de tourisme et de loisirs

Le bassin du Célé dispose de nombreux atouts, qui expliquent un attrait touristique certain (paysages variés, architecture, milieux aquatiques, richesses naturelles) et qui sont le support d’une activité touristique, qui apparaît essentielle pour l’économie du bassin.

Dans la partie lotoise du bassin du Célé, les activités liées au tourisme ont connu au cours des années 90 un développement important, qui se traduit notamment par la création d’un certain nombre de structures d’accueil : campings, gîtes ruraux…. Ces derniers sont en grande majorité implantés dans la vallée du Célé, à l’aval de Figeac.

Cependant, en partie du fait des problèmes de qualité bactériologique de l'eau, plusieurs activités touristiques sont en déclin : départ d’une colonie de vacances, d’un loueur de canoé, diminution de la vente des cartes de pêche…

Dans le département du Cantal, les activités liées au tourisme apparaissent moins développées, du fait, notamment, d’un climat moins favorable à l’accueil en période estivale. Néanmoins, une volonté de développement du tourisme se manifeste, illustrée par la création de plans d’eau communaux, de campings, de gîtes et d’une vélo-route.

- Pêche :
L’activité pêche est fortement développée sur l’ensemble du bassin. En amont de Figeac et sur les affluents du Célé (Rance, Veyre, Bervezou), les peuplements piscicoles, classés en première catégorie, sont un attrait majeur pour les pêcheurs « itinérants » pratiquant notamment la pêche au toc et à la mouche. L’aval de Figeac et les plans d’eau de deuxième catégorie attirent un public de pêcheur plus familial et plus « sédentaire » (pêche au coup).
• **Canoë-kayak**
 L'activité canoë-kayak est pratiquée en famille ou pour le loisir et la détente sur le Célé depuis Bagnac jusqu'à la confluence avec le Lot. Quand les conditions hydrologiques le permettent, ces activités nautiques sont également pratiquées par certains clubs sur certains affluents (Veyre ou Rance).

• **Baignade**
 La qualité de l'eau permet la baignade sur le Célé, à l'aval d'Espagnac-Sainte-Eulalie et entre Bagnac-sur-Célé et Figeac. Dans le Cantal, la baignade, rare sur les cours d'eau (quelques sites sur la Rance et le Célé), est plutôt pratiquée sur les plans d'eau communaux : Cassaniouze, Calvinet ou le Rouget (actuellement fermé à la baignade).

• **Randonnée**
 L'activité de randonnée est assez importante sur l'ensemble du bassin. Dans le Lot, ce loisir est surtout lié à la présence des chemins de St Jacques de Compostelle qui longent, pour partie, la vallée du Célé à l'aval de Figeac.

Activités économiques : à retenir !

Le bassin versant du Célé est caractérisé par une activité agricole importante et diversifiée. L'élevage est toutefois largement majoritaire.

L'activité industrielle est très peu développée et concentrée sur les 3 principales agglomérations (Figeac, Maurs, Bagnac).

Le nombre de résidents secondaires et de touristes hébergés sur le territoire est conséquent. L'augmentation saisonnière de population qui en résulte est une donnée importante à prendre en compte pour la gestion de l’Alimentation en Eau Potable (AEP) et des rejets d'assainissement.

2.3 Usagers et acteurs des cours d'eau

Le Célé est une rivière privée (ou non domaniale) : les propriétaires riverains possèdent la berge et le fond du lit jusqu’à la moitié du cours d’eau.

Sources
- Déclaration d'intérêt général pour la restauration et l'aménagement des berges et des milieux aquatiques du Célé - Association pour l'Aménagement de la Vallée du Lot, 2002
- Conciliation des usages, droits et devoirs des riverains, usagers et acteurs des cours d'eau non domaniaux - Larrouy-Castera, 2000

L’Article L 215-14 du Code de l’Environnement (ancien article 114 du Code Rural) déclare que tout propriétaire riverain est tenu à : « un curage régulier pour rétablir le cours d'eau dans sa longueur et sa profondeur naturelle, à l’entretien de la rive par élagage et recépage de la végétation arborée et à l’enlèvement des embâcles et débris, flottants ou non, afin de maintenir l’écoulement naturel des eaux, d’assurer la bonne tenue des berges et de préserver la faune et la flore dans le respect du bon fonctionnement des écosystèmes aquatiques. »

Cet article est ainsi modifié par la loi sur l'eau du 30 décembre 2006 : “le propriétaire riverain est tenu à un entretien régulier du cours d'eau. L'entretien régulier a pour objet de maintenir le cours d'eau dans son profil d'équilibre, de permettre l'écoulement naturel des eaux et de contribuer à son bon état écologique ou, le cas échéant, à son bon potentiel écologique, notamment par l'enlèvement des embâcles, débris et atterrissements, flottants ou non par élagage ou recepage de la végétation des rives.”
L'article 31 de la Loi sur l'eau de 1992 offre toutefois aux collectivités locales la possibilité de se substituer aux riverains défaillants et d'intervenir dans l'entretien des rivières des cours d'eau « non domaniaux ». Cette intervention ne peut se faire qu'avec l'accord du propriétaire riverain et pour l'exécution de travaux, ouvrages ou installations présentant un caractère d'intérêt général ou d'urgence.

La loi sur l'eau du 30 décembre 2006 conditionne les opérations groupées d'entretien régulier d'un cours d'eau à la réalisation d'un plan de gestion établi à l'échelle d'une unité hydrographique cohérente et compatible avec les objectifs du SAGE.

Les opérations d'entretien des berges peuvent être effectuées directement par les riverains sans accord ni déclaration préalable. Par contre la loi du 3 janvier 1992 pose, dans son article 10, le principe général de l'autorisation ou de la déclaration de tous prélèvements sur les eaux superficielles ou souterraines, rejets ou travaux ayant un impact sur la ressource hydraulique. Ainsi :
- Les travaux de restauration et de curage nécessitant l'intervention en lit mineur sont soumis à déclaration ou autorisation.
- Les forages doivent être déclarés au Bureau de Recherches Géologique et Minière (BRGM) dès lors que leur profondeur excède 10 mètres.
- Sur le bassin du Célé, classé en zone de répartition des eaux (à l'exception de la commune de Roumégoux dans le Cantal), tout prélèvement non domestique en eau superficielle ou souterraine est soumis à déclaration si son débit est inférieur à 8 m³ / heure et à autorisation au-delà de ce débit.
- Les prélèvements dans un cours d'eau ou dans sa nappe d'accompagnement sont généralement soumis à déclaration ou autorisation s'ils dépassent 2 % du débit moyen mensuel d'étiage.

Les services de police de l'eau sont assurés par les Directions Départementales de l'Agriculture et de la Forêt du Cantal et de l'Aveyron et par la Direction Départementale de l'Equipement et de l'Agriculture du Lot (DDEA). Les démarches de déclaration et d'autorisation doivent être faites auprès de ces services.

Le défaut de déclaration est une infraction passible d'amende (Tribunal de Police). Le défaut d'autorisation est un délit et relève donc du Tribunal Correctionnel.

L'article 22 de la loi sur l'eau crée également un délit général de pollution. Il vise tout jet, rejet, déversement, simple écoulement, dans toutes les eaux quelles soient superficielles, souterraines, ou eaux de la mer dans la limite des eaux territoriales, de substances quelconques dont l'action ou la réaction même provisoirement, entraîne des effets nuisibles sur la santé, et des dommages à la faune ou à la flore.

Usagers et acteurs : à retenir !

Le Célé et ses affluents sont des cours d'eau non domaniaux. Les propriétaires riverains sont tenus à l'entretien général des berges et du lit mineur.

Les services de police de l'eau sont exercés par les DDAF du Cantal, de l'Aveyron et la DDEA du Lot.

4 Les puits ou forage sont considérés comme non domestiques quand le volume prélevé est supérieur à 1 000 m³ / an.
CHAPITRE 2 : CONNAISSANCE DE LA RESSOURCE EN EAU ET DES MILIEUX AQUATIQUES

1 Evaluation de la qualité des eaux superficielles

1.1 Origine des données

Les stations de prélèvement pour l’étude et le suivi de la qualité physico-chimique et bactériologique de l’eau (depuis 2000), figurent dans le tableau 8 ci-dessous.

<table>
<thead>
<tr>
<th>SSBV</th>
<th>Nombre</th>
<th>Stations</th>
<th>Commune</th>
<th>Localisation</th>
<th>Etude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Célé-</td>
<td>2</td>
<td>C10</td>
<td>St Constant</td>
<td>Amont de St Constant</td>
<td>B</td>
</tr>
<tr>
<td>Ressègue</td>
<td></td>
<td>C15</td>
<td>Le Trioulou</td>
<td>Amont de la confluence avec la Rance</td>
<td>B</td>
</tr>
<tr>
<td>Célé-Aujou</td>
<td>2</td>
<td>C20</td>
<td>Le Trioulou</td>
<td>Pont des Aurières</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C40</td>
<td>Bagnac-sur-Célé</td>
<td>Amont de Bagnac-sur-Célé</td>
<td>B</td>
</tr>
<tr>
<td>Célé-</td>
<td>2</td>
<td>C70</td>
<td>Bagnac-sur-Célé</td>
<td>Amont carrières RD</td>
<td>B</td>
</tr>
<tr>
<td>Enguirande</td>
<td></td>
<td>C90</td>
<td>St Jean Mirabel</td>
<td>Amont de la confluence avec le Bervezou</td>
<td>B</td>
</tr>
<tr>
<td>Célé-</td>
<td>7</td>
<td>C100</td>
<td>Viazac</td>
<td>Amont de Buzac RD</td>
<td>B</td>
</tr>
<tr>
<td>St</td>
<td></td>
<td>C120</td>
<td>Figeac</td>
<td>Captage AEP Prentegarde</td>
<td>B et PC</td>
</tr>
<tr>
<td>Perdoux</td>
<td></td>
<td>C130</td>
<td>Figeac</td>
<td>Plan d’eau de Surgié</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C150</td>
<td>Figeac</td>
<td>Aval de l’ancien pont D662 RG</td>
<td>B</td>
</tr>
<tr>
<td>Basse</td>
<td>17</td>
<td>C170</td>
<td>Figeac</td>
<td>Amont du rejet de la STEP</td>
<td>B</td>
</tr>
<tr>
<td>vallée</td>
<td></td>
<td>C190</td>
<td>Figeac</td>
<td>Pont D93 Merlançon</td>
<td>B et PC</td>
</tr>
<tr>
<td>du</td>
<td></td>
<td>SP10</td>
<td>Saint Perdoux</td>
<td>Amont de la confluence</td>
<td>B</td>
</tr>
<tr>
<td>Célé</td>
<td></td>
<td>C210</td>
<td>Bédouer</td>
<td>Pont D18</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C220</td>
<td>Boussac</td>
<td>Amont du pont D48</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C240</td>
<td>Corn</td>
<td>Aval de Corn</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C260</td>
<td>Espagnac-St-Eulalie</td>
<td>Aval du pont</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C270</td>
<td>Brengues</td>
<td>Aval du pont D38</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C280</td>
<td>St Sulpice</td>
<td>Face au camping municipal</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C290</td>
<td>Marchilhac-sur-Célé</td>
<td>Plan d’eau</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C300</td>
<td>Marchilhac-sur-Célé</td>
<td>Aval de Marchilhac-sur-Célé</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C310</td>
<td>Sauliac-sur-Célé</td>
<td>Plage de Sauliac-sur-Célé</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C311</td>
<td>Sauliac-sur-Célé</td>
<td>Aire d’embarquement de Sauliac</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C320</td>
<td>Orniac</td>
<td>Base nautique « amis du Célé »</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C330</td>
<td>Cabrerets</td>
<td>Pont de Cabrerets</td>
<td>B et PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C340</td>
<td>Cabrerets</td>
<td>Aval du moulin</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C350</td>
<td>Cabrerets</td>
<td>Aval du futur rejet de STEP</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cres100</td>
<td>Corn</td>
<td>Aval de la grotte</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cres200</td>
<td>St Sulpice</td>
<td>Aval du pont</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cres300</td>
<td>Cabrerets</td>
<td>Aval du pont</td>
<td>B</td>
</tr>
<tr>
<td>Rance-Arcasme</td>
<td>2</td>
<td>RAN10</td>
<td>Maurs</td>
<td>Amont de Maurs</td>
<td>B</td>
</tr>
<tr>
<td>Bervezou</td>
<td>2</td>
<td>RAN30</td>
<td>Maurs</td>
<td>Aval de Maurs</td>
<td>B et PC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BER05</td>
<td>Viazac</td>
<td>Pont D76</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BER10</td>
<td>Viazac</td>
<td>Pont D76</td>
<td>B</td>
</tr>
<tr>
<td>Drauzou</td>
<td>2</td>
<td>DRA05</td>
<td>Camburat</td>
<td>Amont de la confluence</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRA10</td>
<td>Camboulit</td>
<td>Amont de la confluence</td>
<td>B et PC</td>
</tr>
<tr>
<td>Veyre</td>
<td>1</td>
<td>VEY10</td>
<td>Linac</td>
<td>Amont de la confluence</td>
<td>B</td>
</tr>
</tbody>
</table>

Tableau 8 : Liste des stations de prélèvement pour l’étude de la qualité physico-chimique (PC) et/ou bactériologique (B) du Célé et de ses affluents.
Parmi ces 37 points de prélèvement, seul deux points (C190 et C330) font partie du Réseau National de Bassin (RNB). Les autres sites appartiennent au Réseau Complémentaire Départemental (RCD) ou au Réseau Complémentaire Départemental Loisirs Aquatiques (RCDLA) (voir annexe 1). Ces derniers permettent un suivi précis de la qualité bactériologique des eaux.

Les prélèvements sont effectués par le SATESE du Lot, la MAGE du Cantal et l'Association pour l'Aménagement de la Vallée du Lot. Les mesures de terrain sont réalisées par ces organismes, les analyses sont faites par des laboratoires agréés. Les prélèvements sont réalisés entre avril et octobre, au rythme d'un prélèvement toutes les trois semaines.

Les sous bassins Source Célé, Moulègre, Anès, Gorges Rance et Source Rance ne font pas l'objet de mesures. En 2007, au titre du RCDLA, 4 points de suivi supplémentaires vont être créés sur la Ressègue, les Sources de la Rance, le Moulègre et l'Anès. De plus, dans le cadre du réseau de surveillance de la DCE deux points de suivi de la qualité physico-chimique vont être créés dès 2007 à Vitrac (Rance) et à Sauliac - sur- Célé).

1.2 Qualité physico-chimique

Le suivi de la qualité physicochimique est réalisé sur 6 stations : RAN30 (Rance) ; BER10 (Bervezou), C120 (Célé en amont de Figeac), C190 (Célé en aval de Figeac), DRA10 (Drauzou), C330 (Célé à Cabrerets).

La qualité physico-chimique est évaluée à partir du Système d'Evaluation de la Qualité de l'Eau (SEQUEA) fondé sur la notion d'altération. Les altérations sont des groupes de paramètres de même nature, ou de même effet, qui permettent de décrire les types de dégradation de la qualité de l'eau. Chaque altération est décrite en 5 classes de qualité ajustée par un indice gradué de 0 à 100. Ces paramètres de même nature sont regroupés en quinze « familles » ou altérations de la qualité de l'eau.

Il est important de noter que l'année 2003 a été une année difficile du fait de la grande sécheresse. Les résultats obtenus au cours de cette année ne sont donc pas représentatifs et comparables à ceux des années suivantes.

Quand une évolution de la qualité a été constatée en 2003 mais qu'elle ne semble pas confirmer une tendance exprimée par les résultats des autres années, nous n'avons pas pris en compte ce changement ponctuel pour évaluer l'évolution générale.

1.2.1 Matières organiques et oxydables

Cette altération, qui traduit l'état de l'oxygénation du milieu, est déterminée à partir de paramètres qui renseignent sur la présence dans l'eau de matières organiques carbonées ou azotées dont la dégradation est susceptible de consommer l'oxygène dissous. Un milieu pauvre en oxygène est défavorable aux équilibres biologiques et réduit la capacité d'autoépuration des rivières.

Parmi ces paramètres, l'oxygène dissous est également régulièrement mesuré. C'est un bon indicateur du pouvoir d'autoépuration du milieu et de sa capacité à permettre la vie aquatique. Les sous saturations ainsi que les sur saturations sont le résultat de dysfonctionnements.

Les mauvaises qualités observées sont généralement dues à une forte demande chimique en oxygène (D.C.O.) associée à de fortes concentrations en azote organique. Le dépassement de la capacité d'autoépuration se traduit par un déficit en oxygène dissous.
Cours d’eau	Station	2000	2001	2002	2003	2004	2005	Evolution
Rance | RAN30 | Bonne | Bonne | Bonne | Passable | Passable | Bonne | Stable
Célè en amont de Figeac | C120 | Très bonne | Très bonne | Très bonne | Mauvaise | Bonne | Très bonne | Stable
Célè en aval de Figeac | C190 | Passable | Bonne | Bonne | Passable | Bonne | Passable | Stable
Célè à Cabrerets | C330 | Très bonne | Bonne | Bonne | Bonne | Bonne | Bonne | Stable
Bervezou | BER10 | Très bonne | Très bonne | Bonne | Très bonne | Très bonne | Stable
Drauzou | DRA10 | Très bonne | Très bonne | Très bonne | Bonne | Très bonne | Stable

Tableau 9 : Evolution de la qualité des eaux pour le paramètre matières organiques et oxydables

Sur le Célè et la Rance, la qualité est globalement bonne à passable, et légèrement meilleure à l’aval de Cabrerets (C330). Sur le Célè en amont de Figeac, le Drauzou et le Bervezou, la qualité (paramètre matières organiques et oxydable) est très bonne. Aucune évolution notable de la qualité n’est observable en 6 ans.

1.2.2 Matières azotées (hors nitrates)

Cette altération est déterminée à partir du suivi de 3 paramètres (ammoniaque, nitrites et azote kjeldhal) qui situent la présence de nutriments du type matières azotées, hors nitrates.

Les matières azotées ont deux types d’effets :
- dans certaines conditions, elles présentent un risque notable de toxicité pour les poissons (ammoniaque, nitrites) ;
- elles peuvent également contribuer au développement des végétaux aquatiques (ammonium).

L’ion ammonium (NH₄⁺) est un indicateur de la présence d’une pollution provenant d’eaux usées domestiques ou d’effluents d’élevage, son origine étant le plus souvent fécale. Les nitrites (NO₂⁻) sont le résultat d’une première oxydation des ions ammonium dans le milieu naturel. Ils sont très toxiques pour les poissons. On considère que pour les poissons blancs la concentration maximale est de 0,3 mg/l. Ce paramètre n’est pas souvent mesuré alors que sa détection est fondamentale du point de vue de l’hydrobiologiste.

L’azote Kjeldhal représente la totalité de l’azote réduit, dont une part importante est représentée par l’ion ammonium.

Cours d’eau	Station	2000	2001	2002	2003	2004	2005	Evolution
Rance | RAN30 | Passable | Bonne | Bonne | Mauvaise | Passable | Bonne | Stable
Célè en amont de Figeac | C120 | Bonne | Bonne | Bonne | Bonne | Bonne | Bonne | Stable
Célè en aval de Figeac | C190 | Passable | Bonne | Bonne | Mauvaise | Passable | Passable | Dégradation à confirmer
Célè à Cabrerets | C330 | Bonne | Bonne | Bonne | Bonne | Bonne | Passable | Dégradation à confirmer
Bervezou | BER10 | Bonne | Bonne | Bonne | Passable | Bonne | Bonne | Stable
Drauzou | DRA10 | Bonne | Bonne | Bonne | Bonne | Très Bonne | Bonne | Stable

Tableau 10 : Evolution de la qualité des eaux pour le paramètre matières azotées

La qualité de l’eau est bonne à passable pour le paramètre matières azotées. Ce paramètre est stable pour la plupart des cours d’eau. Le Célè à l’aval de Figeac et à Cabrerets semblerait connaître une dégradation, mais cela reste à confirmer.
1.2.3 **Nitrates**

En tant que source d'azote pour les algues et les végétaux, les nitrates participent activement au phénomène d'eutrophisation. D'autre part, leur présence en forte concentration peut rendre l'eau impropre à la consommation humaine.

Les nitrates (NO$_3^-$) sont des composés azotés résultant de la poursuite de l'oxydation des nitrites. La pollution par les nitrates a une origine essentiellement diffuse (rejets agricoles), mais les rejets domestiques y contribuent également.

<table>
<thead>
<tr>
<th>Cours d'eau</th>
<th>Station</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rance</td>
<td>RAN30</td>
<td>Passable</td>
<td>Passable</td>
<td>Passable</td>
<td>Bonne</td>
<td>Passable</td>
<td>Passable</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en amont de Figeac</td>
<td>C120</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Passable</td>
<td>Bonne</td>
<td>Passable</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en aval de Figeac</td>
<td>C190</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Passable</td>
<td>Bonne</td>
<td>Passable</td>
<td>Dégradation à confirmer</td>
</tr>
<tr>
<td>Célé à Cabrerets</td>
<td>C330</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Passable</td>
<td>Bonne</td>
<td>Passable</td>
<td>Stable</td>
</tr>
<tr>
<td>Bervezou</td>
<td>BER10</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Drauzou</td>
<td>DRA10</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Tableau 11 : Evolution de la qualité des eaux pour le paramètre nitrates

Les stations du Drauzou et du Bervezou possèdent des résultats de classe de qualité (bonne) identiques sur les cinq années d'étude. De qualité passable, les eaux du Célé et de la Rance sont plus concentrées en nitrates que celles des autres affluents. Cette qualité est globalement stable. En effet pour ces stations, les faibles variations de classe (passage de la classe bonne à la classe passable) correspondent à une petite variation de l’indice du SEQ eau (voir annexe 1) et ne peuvent témoigner d’une évolution notable de la qualité de l’eau. Seule la station située à l’aval de Figeac se serait légèrement dégradée depuis 2001 (à confirmer).

1.2.4 **Matières phosphorées**

Cette altération est déterminée par la présence du phosphate et phosphore total (incluant le phosphore adsorbé sur les particules en suspension et le phosphore organique) qui sont des nutriments pour la croissance des végétaux et donc peuvent être impliqués dans le phénomène d’eutrophisation. Les matières phosphorées constituent un facteur de régulation de la croissance des algues et du phytoplancton.

Le phosphore provient des rejets domestiques, mais également des industries (agroalimentaires) et de l'agriculture (engrais), sous forme directement assimilable par les végétaux aquatiques.

<table>
<thead>
<tr>
<th>Cours d'eau</th>
<th>Station</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rance</td>
<td>RAN30</td>
<td>Bonne</td>
<td>Passable</td>
<td>Bonne</td>
<td>Mauvaise</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en amont de Figeac</td>
<td>C120</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Dégradation ?</td>
</tr>
<tr>
<td>Célé en aval de Figeac</td>
<td>C190</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Dégradation ?</td>
</tr>
<tr>
<td>Célé à Cabrerets</td>
<td>C330</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Dégradation ?</td>
</tr>
<tr>
<td>Bervezou</td>
<td>BER10</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Passable</td>
<td>Très Bonne</td>
<td>Bonne</td>
</tr>
<tr>
<td>Drauzou</td>
<td>DRA10</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Très Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Tableau 12 : Evolution de la qualité des eaux pour le paramètre matières phosphorées

5 Enrichissement excessif du milieu aquatique en nutriments. Cet enrichissement se traduit par une prolifération excessive d’algues, de végétaux, de bactéries qui entraîne un appauvrissement critique des eaux en oxygène.
La qualité de l'eau liée à la concentration en phosphore est passable à bonne sur la Rance et le Célé. Elle est légèrement meilleure sur le Bervezou et le Drauzou.

La qualité pour ce paramètre s’est dégradée en 2005 sur le Célé. Cette dégradation ponctuelle (une année) reste à confirmer. Sur les autres cours d’eau, la qualité semble stable.

1.2.5 Particules en suspension

Les particules en suspension sont transférées aux cours d’eau lors d’événements pluvieux par érosion des sols, cultivés ou non, et du fait de rejets domestiques, pluviaux et de lessivage de surfaces imperméabilisées (routes, parkings…). Il s’agit d’un paramètre particulièrement pénalisant pour le milieu physique (colmatage des fonds et réduction de la capacité d’accueil) et pour la faune aquatique (réduction de la transparence des eaux, pouvoir abrasif…).

De plus les métaux lourds et le phosphore peuvent être adsorbés sur les particules en suspension qui s’accumulent près des ouvrages. Un événement pluvieux important peut alors entraîner un relargage brutal de métaux et de phosphore et perturber ainsi certains usages.

<table>
<thead>
<tr>
<th>Cours d’eau</th>
<th>Station</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rance</td>
<td>RAN30</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Très Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en amont de Figeac</td>
<td>C120</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en aval de Figeac</td>
<td>C190</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé à Cabrerets</td>
<td>C330</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Bervezou</td>
<td>BER10</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très Bonne</td>
<td>Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Drauzou</td>
<td>DRA10</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Tableau 13 : Evolution de la qualité des eaux pour le paramètre *matières en suspension*

La qualité des eaux pour ce paramètre est bonne à très bonne. Ceci contraste fortement avec la perception des usagers et riverains, qui considèrent souvent que les eaux du Célé sont de plus en plus troubles (boueuses).

La qualité peut être considérée comme stable sur tous les cours d’eau suivis. En effet, bien que les classes de qualité varient d’une année sur l’autre, les indices de qualité qui y sont associés ne fluctuent que très peu.

1.2.6 Minéralisation

La minéralisation correspond à la quantité de sels minéraux contenus dans l’eau (chlorures, sulfates, calcium, magnésium, potassium, sodium). Elle est évaluée en mesurant la conductivité, la dureté et l’alcalinité de l’eau.

La présence de minéraux dans les eaux est souvent d’origine naturelle, et peut même être recherchée (base de l’exploitation des eaux embouteillées), mais en excès, ils peuvent provoquer des inconvénients (altération gustative, laxative) et des maladies (maladies rénales…).
Tableau 14 : Évolution de la qualité des eaux pour le paramètre minéralisation

La qualité de l'eau, pour le paramètre minéralisation, est très bonne et stable sur le Drauzou, le Bervezou, le Célé à Cabrerets et le Célé à l'amont de Figeac. Les indices de qualité atteignent souvent 100.
La qualité est par contre mauvaise sur le Célé en aval de Figeac et très mauvaise sur la Rance en aval de Maurs. Il est vraisemblable que ces mauvais résultats soient dus aux rejets des villes de Figeac et de Maurs. Notons une très nette amélioration en 2004 sur ces deux points, mais qui n'est pas confirmée par les résultats de 2005.

1.2.7 Acidification

Les eaux superficielles constituent un système physico-chimique complexe tamponné par les divers équilibres entre les espèces moléculaires ou ionisées présentes, dont les équilibres carboniques.

Des pH compris entre 5 et 9 constituent les limites dans lesquelles un développement quasi-normal de la flore et de la faune aquatique semble être permis. Par ailleurs, il est difficile d'établir des critères précis en ce qui concerne la vie et la reproduction des poissons, mais on retient souvent une zone optimale, celle délimitée par les pH extrêmes 6,5 et 8,5.
En général, les effets du pH se font sentir par l'influence qu'exerce ce paramètre sur les équilibres entre les autres composés du milieu (azote ammoniacal, sulfate de sodium, acide cyanhydrique, etc.) lorsqu'ils ont une toxicité variable selon qu'ils se trouvent ou non sous forme ionisée.

Tableau 15 : Évolution de la qualité des eaux pour le paramètre acidification

La qualité de l'eau pour le paramètre acidification est très bonne à bonne sur le Célé et sur ses affluents. La qualité est stable sur le Drauzou, la Rance et le Célé à Cabrerets. On observe toutefois une légère dégradation en 2005, à confirmer sur le Célé en amont et en aval de Figeac, et sur le Bervezou.
1.2.8 Température

La température est l’un des facteurs écologiques les plus importants parmi tous ceux qui agissent sur les organismes aquatiques. Elle joue un rôle primordial dans la distribution des espèces, aussi bien par ses extrêmes que par ses variations diurnes ou saisonnières.

La plupart des réactions chimiques vitales sont ralenties voire arrêtées par un abaissement important de température. À contrario, des augmentations de température peuvent avoir pour effet de tuer certaines espèces (poissons d’eaux vives par exemple), mais également de favoriser le développement d’autres espèces en entrainant ainsi un déséquilibre écologique (phénomène d’eutrophisation par exemple).

<table>
<thead>
<tr>
<th>Cours d’eau</th>
<th>Station</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>Évolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rance</td>
<td>RAN30</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Très Bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en amont de Figeac</td>
<td>C120</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très Bonne</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé en aval de Figeac</td>
<td>C190</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Bonne</td>
<td>Très bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Célé à Cabrerets</td>
<td>C330</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Passable</td>
<td>Bonne</td>
<td>Très bonne</td>
</tr>
<tr>
<td>Bervezou</td>
<td>BER10</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Stable</td>
</tr>
<tr>
<td>Drauzou</td>
<td>DRA10</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Très bonne</td>
<td>Stable</td>
</tr>
</tbody>
</table>

Tableau 16 : Evolution de la qualité des eaux pour le paramètre température

La qualité des eaux pour le paramètre température est très bonne en 2005 sur tous les cours d’eau. La qualité est globalement stable pour tous ces points. On observe cependant une dégradation générale en 2003 qui s’explique par la canicule et une anomalie sur le point situé en aval de Figeac (dégénération en 2004).

1.2.9 Métaux lourds

Les métaux lourds sont des micropolluants de nature à entraîner des nuisances même quand ils sont rejetés en quantités très faibles, leur toxicité se développant par bioaccumulation. De ce fait, la mesure de la qualité des eaux stricto sensu ne permet pas toujours de déceler des contaminants à l’état de traces. Elle peut cependant révéler une certaine contamination de l’eau à l’instant t, ce qui dénoterait un problème actuel de rejet dans le milieu aquatique.

Les mesures des métaux lourds se font donc sur eaux brutes, sur sédiments et sur bryophytes :

- Les micropolluants ont pour propriété de s’adsorber sur les sédiments et, de ce fait, s’y accumulent au fil du temps. Les sédiments sont donc un révélateur de pollution en métaux lourd sur le long terme. Toutefois, les résultats obtenus ne sont pas entièrement représentatifs de la pollution existante, car ils ne concernent que la portion abiotique des éléments.

- L’analyse sur bryophytes permet de pallier ce manque. Les bryophytes sont des organismes végétaux sessiles qui sont capables de survivre à de forts taux de concentration en polluants, organiques ou non. Ces organismes sont des bioaccumulateurs ; ils possèdent donc un système d’intégration biologique des contaminants. L’analyse des bryophytes offre ainsi une plus grande précision sur la qualité des eaux qu’elles côtoient, permettant de mesurer la pollution en métaux lourd sur le moyen terme.

- Des mesures peuvent aussi être réalisées sur les eaux brutes, elles permettent d’estimer la pollution des eaux en métaux lourds sur le court terme (instant t).
L'industrie est responsable de la quasi-totalité des rejets de métaux lourds dans l'eau. Toutefois, certains métaux lourds peuvent être présents naturellement dans la roche mère (Arsenic par exemple) et entraînés dans l'eau par érosion ; mais aussi être d'origine « domestique » : plomb dans les canalisations...

<table>
<thead>
<tr>
<th>INDEX</th>
<th>Cours d'eau</th>
<th>Localisation</th>
<th>Support</th>
<th>Paramètre déclassant</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRYOC04</td>
<td>Le Célé</td>
<td>Point de référence (Mourjou)</td>
<td>Bryophytes</td>
<td>Cd</td>
</tr>
<tr>
<td>C40</td>
<td>Le Célé</td>
<td>Amont de Bagnac-sur-Célé</td>
<td>Bryophytes</td>
<td>As</td>
</tr>
<tr>
<td>C70</td>
<td>Le Célé</td>
<td>Aval de Bagnac-sur-Célé</td>
<td>Bryophytes</td>
<td>As</td>
</tr>
<tr>
<td>120</td>
<td>Le Célé</td>
<td>Amont de Figeac</td>
<td>Bryophytes</td>
<td>As</td>
</tr>
<tr>
<td>91000</td>
<td>Le Célé</td>
<td>Aval de Figeac</td>
<td>Bryophytes</td>
<td>Cu</td>
</tr>
<tr>
<td>90000</td>
<td>Le Célé</td>
<td>Cabrerets</td>
<td>Bryophytes</td>
<td>Hg</td>
</tr>
<tr>
<td>BRYOC03</td>
<td>Ruisseau de Planiolles</td>
<td>Amont de Figeac</td>
<td>Bryophytes</td>
<td>Zn</td>
</tr>
<tr>
<td>BRYOC02</td>
<td>Drauzou</td>
<td>Amont de Camburat</td>
<td>Bryophytes</td>
<td>/</td>
</tr>
<tr>
<td>BRYOC01</td>
<td>Drauzou</td>
<td>Aval de Camburat</td>
<td>Bryophytes</td>
<td>/</td>
</tr>
</tbody>
</table>

Tableau 17 : Qualité des eaux pour le paramètre métaux lourds (2004)

En 2004, le principal élément métallique retrouvé (dans les bryophytes et les sédiments), de Mourjou et jusqu’à Cabrerets, est l’Arsenic (As). Cette contamination chronique est due à la présence naturelle d’arsenic dans les roches du bassin amont. La plus forte concentration (très mauvaise qualité) se situe à l’aval de Bagnac-sur-Célé (C70). Il est à noter qu’à ce même point, la qualité de l’eau est jugée mauvaise pour la concentration en Cadmium (Cd). Ces altérations à l’aval de Bagnac proviennent des rejets passés mais aussi plus récents d’entreprises situées dans la zone d’activité de Bagnac.

A l’aval de Figeac, l’analyse des sédiments révèle une contamination au mercure (Hg) que l’on retrouve sur les bryophytes, dans une moindre mesure. Mais c’est l’Arsenic qui déclasse le cours d’eau dans une qualité moyenne, sur les bryophytes. Par contre, l’analyse des eaux brutes, dévoile une pollution instantanée en Cuivre (qualité Mauvaise) et également en Cadmium (Mauvaise). Cette dernière donnée est le témoin d’un problème actuel relatif aux rejets de certaines industries de la ville de Figeac. La pollution actuelle en métaux lourds pourrait être due à des rejets accidentels qui provoquent une contamination du réseau d’assainissement. L’origine de ces rejets accidentels aurait été identifiée récemment (entreprise Ratier) et serait à ce jour supprimée.

La pollution détectée sur les sédiments est due à des rejets passés, notamment de la principale entreprise de traitement de surface du territoire. La station de traitement mise en place en 2005 par cette entreprise a supprimé tout rejet au milieu naturel.

Le Ruisseau de Planiolles, quant à lui, présente une importante pollution en Zinc (Zn), avec une qualité d’eau très mauvaise sur les bryophytes et mauvaise sur les sédiments. Les eaux souterraines circulant dans les anciennes galeries des mines de Camburat – Planiolles avant de rejoindre le
ruisseau à l’amont du point de mesures, expliqueraient les concentrations anormalement élevées pour ce paramètre sur le ruisseau de Planioles.

Ce ruisseau montre également de fortes concentrations en Cadmium et, de façon moindre, en Plomb. Ces pollutions peuvent également être dues à l’ancienne mine de zinc.

Enfin, les sédiments du Drauzou témoignent d’une ancienne pollution au Nickel (Ni) en amont de Camburat et à l’Arsenic en aval, probablement due à cette même activité minière.

1.2.10 Autres altérations

La présence de phytoplancton, les concentrations en micropolluants organiques, en hydrocarbures et en pesticides sur eau brute ne sont pas mesurés dans le cadre du suivi qualité en vigueur sur le bassin hydrographique. Le suivi de l’ensemble de ces paramètres s’avère très difficile, le nombre de molécules présentes sur le marché étant relativement élevé. De plus, pour certains pesticides les seuils de détection sont supérieurs aux seuils de potabilité.

Le réseau routier adapté à un secteur rural et l’activité agricole surtout liée à l’élevage laissent à penser que les concentrations en pesticides, micropolluants organiques et hydrocarbures doivent être globalement faibles sur le bassin versant. Toutefois, la présence de certaines infrastructures (route nationale, déviation, voie ferrée) ainsi que la localisation de certaines pratiques agricoles (maïsiculture en basse vallée du Célé) peuvent être source de contamination ponctuelle dans le temps (traitements phytosanitaires en fin de printemps) et dans l’espace, qu’il serait intéressant de suivre à l’avenir.

A ce jour, seules quelques données ponctuelles issues de différentes sources existent :

- **La DDASS du Lot** effectue des prélèvements sur les eaux destinées à la consommation humaines, jusqu’à 150 pesticides sont mesurés. Nous avons pu nous procurer les résultats pour les captages de Gabanelle sur le Bervezou et Prentegarde sur le Célé :
 - Les teneurs en pesticides sont toutes inférieures à la limite de qualité pour l’alimentation en eau potable (0,10 µg/l), et inférieures à 0,025 µg/l pour la majorité des paramètres. Les résultats n’étant pas plus précis, ils ne permettent pas de déterminer la classe de qualité dans le système Seq-Eau.
 - Les teneurs en micropolluants organiques sont aussi inférieures aux limites de qualité, mais elles ne sont pas assez précises pour déterminer la classe de qualité par le système Seq-Eau.

 - Les actions nationales :
 - lancement d’un programme de récupération des emballages de produits phytosanitaires et des produits non utilisés
 - réalisation de contrôles de l'utilisation de produits phytosanitaires par les agents du Service Régional de la Protection des Végétaux (SRPV),
 - conduite des études en vue d’un contrôle obligatoire des pulvérisateurs. Mise en place d’une certification du matériel neuf.
- mise au point et développement :
 - de techniques alternatives utilisant peu ou pas de produits phytosanitaires,
 - de systèmes de gestion des reliquats de bouillie après traitement des cultures.

- Les actions régionales :
 - étude à l'échelle régionale pour identifier les bassins versants à problème,
 - diagnostics de bassins versants, caractérisation de la ressource en eau, suivi renforcé de la qualité de l'eau,
 - diagnostics à l'échelle des exploitations dans les sous bassins prioritaires
 - suite à ces diagnostics, mise en place de plans d'action.

Créé le 22 mars 2001 par décision du Préfet de Région, le **Groupe Régional d’Action pour la réduction de la pollution de l'eau par les produits phytosanitaires en Midi-Pyrénées** (Gramip) décline au niveau régional le plan national phytosanitaire. Le bassin du Célé n’a pas été ciblé en tant que zone d’action prioritaire, seuls deux points en eau souterraine sont suivis par le Gramip (cf. partie 2 sur les eaux souterraines)

Le groupe **Phyt’eauvergne** a été créé en 1997 à l’initiative des ministères de l’Agriculture, de l’Environnement et de la Santé. Son objectif est de surveiller et de reconquérir la qualité des eaux naturelles vis-à-vis des produits phytosanitaires en Auvergne. Dans le cadre des activités du groupe un réseau régional de suivi de la qualité des eaux vis à vis des produits phytosanitaires a été mis en place. Il comprend actuellement 33 points de suivi en eaux superficielles, sur lesquels quatre prélèvements sont effectués par an.

Dans un souci de bonne interprétation des résultats d’analyses obtenus (sans limitation à la seule norme de potabilité) plusieurs facteurs sont pris en compte pour juger de l’impact des résidus décelés sur la qualité de l’eau :

- la norme de potabilité qui stipule que la concentration de résidus de produits phytosanitaires dans les eaux destinées à la consommation humaine doit être inférieure à 0.1µg/L pour une molécule donnée (cas particuliers : aldrine, dieldrine, heptachlore et epoxyde d’heptachlore à 0.03µg/L) et à 0.5 µg/L pour l’ensemble des résidus présents.
- le fait que certaines molécules font l’objet d’une réglementation particulière (molécules interdites...).

Un point de prélèvement sur le Célé, à l’aval immédiat de la confluence avec la Rance, est suivi depuis 2001. Les mesures montrent que le Célé présente des **contaminations très ponctuelles**. En comparaison avec les autres points de suivi du réseau Phyt’eauvergne, le point CELE 1 est **peu contaminé** vis à vis des produits phytosanitaires.

Les molécules détectées :

<table>
<thead>
<tr>
<th>Molécule</th>
<th>famille</th>
<th>Usages autorisés</th>
<th>Nombre de détections</th>
<th>Concentration maximale (µg/L)</th>
<th>Date dernière détection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acétochlore amide</td>
<td></td>
<td>Désherbage maïs</td>
<td>1</td>
<td>0.095</td>
<td>13/06/2005</td>
</tr>
<tr>
<td>Alachlore amide</td>
<td></td>
<td>Désherbage maïs, soja</td>
<td>1</td>
<td>0.059</td>
<td>13/06/2005</td>
</tr>
<tr>
<td>Aminotriazole triazole</td>
<td></td>
<td>Désherbage arboriculture, parcs, jardins, zones cultivées avant et après récolte, ...</td>
<td>2</td>
<td>0.380</td>
<td>19/06/2002</td>
</tr>
<tr>
<td>Atrazine triazine</td>
<td></td>
<td>Herbicides maïs, interdit depuis fin 2003</td>
<td>2</td>
<td>0.210</td>
<td>11/12/2002</td>
</tr>
<tr>
<td>Atrazine déséthyl triazine</td>
<td></td>
<td>métabolite l'atrazine</td>
<td>1</td>
<td>0.030</td>
<td>14/06/2006</td>
</tr>
<tr>
<td>Bénalaxyl</td>
<td></td>
<td>Fongicide pour laitue, melons, oignons, pomme de terre, tomate, vigne</td>
<td>1</td>
<td>0.045</td>
<td>12/12/2001</td>
</tr>
<tr>
<td>Phoxime Organo-phosphoré</td>
<td></td>
<td>Insecticides contre les fourmis, usage vétérinaire</td>
<td>1</td>
<td>0.110</td>
<td>16/06/2004</td>
</tr>
<tr>
<td>Prométhryne</td>
<td></td>
<td>Désherbage céleris, lentilles, poireaux.</td>
<td>1</td>
<td>0.060</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 18 : Produits phytosanitaires détectés sur le Célé à Maurs
Sources : Phyt’Eauvergne (avril 2001 à octobre 2006)

D’avril 2001 à octobre 2006, 26% (6/23) des prélèvements ont présenté des détections de matières
actives. 13% des prélèvements (3/23) présentent une détection avec une concentration pour une substance active supérieure à 0.1µg/L. Aucun prélèvement n’a présenté une concentration cumulée dépassant la référence de 0.5µg/L. A partir de ces données, il ressort que 8 substances actives différentes ont été détectées sur la période : un herbicide à usage agricole et non agricole (aminotriazole), quatre herbicides agricoles (maïs, lentilles…), un fongicide et un insecticide. Sur la dernière période, seule de l’atrazine déséthyl, métabolite de l’atrazine, a été détectée en juin 2006 à 0,03 µg/L.

Notons que les concentrations mesurées correspondent dans le Seq-Eau à une qualité de l'eau bonne (si supérieure à 0.1 µg/L) à très bonne.

Qualité physico-chimique : à retenir !

L'objectif de bonne qualité physico-chimique de l’eau à Cabrerets inscrit dans le SDAGE est respecté, mis à part en 2003 et 2005. Sur le reste du Célé, la qualité physico-chimique générale de l’eau (matières organiques et oxydables, matières azotées, nitrate et matières phosphorées) est globalement passable sur l’ensemble du linéaire.

La qualité physico-chimique complémentaire (particules en suspension, minéralisation, acidification et température) est bonne à l’amont de Figeac. En aval de la ville le paramètre minéralisation déclasse la qualité qui devient mauvaise. Cependant, à l’aval de Camboulit, le Célé récupère une certaine capacité d’auto épuration et reçoit des apports d’eau de bonne qualité (résurgences) qui permettent de retrouver à Cabrerets une très bonne qualité physico-chimique complémentaire.

A noter pour l’ensemble des paramètres physicochimiques, une amélioration sensible de la qualité à l’amont immédiat de Figeac qui peut notamment s’expliquer par les apports d’eau de bonne qualité en provenance du Bervezou, du Veyre et du St Perdoux.

Les autres cours d’eau ne sont pas suivi actuellement.

Compte tenu des charges naturelles des eaux, issues de l’érosion de la roche mère, les concentrations en métaux lourds sont globalement acceptables même si deux foyers de pollution ponctuelle existent encore à l’aval de l’agglomération de Figeac et de Bagnac sur Célé.

Les données relatives aux pesticides sont ponctuelles et ne permettent pas d’avoir une bonne connaissance des concentrations moyennes. Les contaminations semblent toutefois rares et limitées (concentrations en deçà des seuils)

Des points de suivi supplémentaires seront créés dès 2007 à Vitrac (Rance) et à Sauliac sur Célé, dans le cadre du réseau de surveillance issu de la mise en œuvre de la DCE. Ils devraient permettre d’affiner les connaissances sur la qualité physico-chimique de ces cours d’eau et sur les sources de dégradation.
1.3 Qualité bactériologique

La contamination bactériologique d’une eau résulte de la présence de champignons, bactéries et virus, principalement liés aux rejets humains (problèmes d’assainissement) et animaux (activité agricole) directs ou indirects.

L’action du soleil, de la température et des êtres vivants présents naturellement dans un cours d’eau en bon état de fonctionnement, peuvent suffire à éliminer la plupart de ces micro-organismes problématiques pour la santé humaine.

Sur le bassin du Célé, cette pollution est imputée aux dysfonctionnements ou à l’absence de systèmes d’épuration collectifs ou autonomes et à certaines pratiques agricoles (lessivage des sols, stockage ou traitement des effluents inefficaces, animaux s’abreuvant directement à la rivière, …). Certains rejets industriels ponctuels (entreprises agroalimentaires) peuvent également contribuer à la contamination des eaux. Cette pollution est particulièrement marquée en période pluvio-orageuse.

La qualité bactériologique d’une eau est évaluée par la concentration en Coliformes thermotolérants, Streptocoques fécaux et Coliformes fécaux. La qualité bactériologique est décrite en 3 classes de qualité ajustée par un indice gradué de 0 à 100.

Le tableau 19 présente la qualité bactériologique des eaux sur les 37 points suivis depuis 2000.

<table>
<thead>
<tr>
<th>Sous bassin</th>
<th>Stations</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Célé-Ressègue</td>
<td>C10</td>
<td>8</td>
<td>0</td>
<td>11</td>
<td>47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Célé-Aujou</td>
<td>C20</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C40</td>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Célé-Enguirande</td>
<td>C70</td>
<td>9</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C90</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C100</td>
<td>2</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C120</td>
<td>24</td>
<td>3</td>
<td>7</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C130</td>
<td>53</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C150</td>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C170</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C190</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SP10</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>55</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>Célé-St Perdoux</td>
<td>C210</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C220</td>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C240</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C260</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C270</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C280</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C290</td>
<td>6</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C300</td>
<td>8</td>
<td>1</td>
<td>25</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basse vallée du Célé</td>
<td>C310</td>
<td>6</td>
<td>1</td>
<td>34</td>
<td>26</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C311</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C320</td>
<td>8</td>
<td>2</td>
<td>34</td>
<td>34</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C330</td>
<td>10</td>
<td>1</td>
<td>48</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C340</td>
<td>0</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C350</td>
<td>n.d.</td>
<td>n.d.</td>
<td>28</td>
<td>28</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rance-Arcambe</td>
<td>RAN10</td>
<td>5</td>
<td>0</td>
<td>27</td>
<td>23</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>RAN30</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BER10</td>
<td>43</td>
<td>1</td>
<td>25</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Drauzou</td>
<td>DRA05</td>
<td>n.d.</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>DRA10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Veyre</td>
<td>VEY10</td>
<td>n.d.</td>
<td>n.d.</td>
<td>20</td>
<td>1</td>
<td>43</td>
</tr>
</tbody>
</table>

Tableau 19 : Evolution de l’indice de qualité bactériologique sur le Célé et ses affluents
En 2005 l'eau est inapte à la baignade sur tous les points de suivi, excepté sur le plan d'eau du Surgié. Cette forte dégradation peut s'expliquer par le fait que la plupart des prélèvements ont été réalisés après des épisodes pluvieux. Nous analyserons par conséquent ci-dessous la tendance moyenne observable entre 2000 et 2005.

- **En période de temps sec sur le Célé :**

La qualité bactériologique des eaux du Célé est généralement acceptable en amont de St Constant (C10). En aval, et jusqu'à Bagnac (Lot), elle se dégrade fortement et devient inapte pour la pratique de la baignade et déconseillée pour les autres loisirs aquatiques (canoë et pêche notamment).

Une légère amélioration est perceptible entre St Jean Mirabel et Figeac. A l’entrée dans Figeac et jusqu’aux portes de Brengues, la qualité bactériologique des eaux du Célé est chroniquement contaminée.

De l'aval de Brengues (C270) jusqu'à Cabrerets (C350) la qualité bactériologique redevient acceptable, mais reste sensible aux épisodes pluvieux qui peuvent la rendre momentanément mauvaise.

Ces contaminations sont en partie dues aux rejets d’effluents d’origine domestique des principales agglomérations (Maurs et Figeac) auxquels s’ajoutent les rejets de plus petites agglomérations (Saint Constant, Bagnac-sur-Célé, Camboulit, Espagnac, …), de maisons non raccordées au réseau collectif et dépourvues de systèmes d’assainissement autonomes performants ainsi que de rejets agricoles directs et indirects (abreuvement en rivière, épandages, fuites de stockages d’effluents…).

La tendance :

Les données obtenues, au cours des 6 années d’étude montrent, depuis 2003, une amélioration de la qualité bactériologique de l’aval de Marcilhac-sur-Célé (C300) à Cabrerets (C350). Cette progression s’étend jusqu’à Brengues (C270) dès l’année 2004.

Sur les autres stations du Célé, aucune amélioration notable n’est observée depuis 2000, excepté en amont de Saint Constant (C10) et au niveau du captage pour l’alimentation en eau potable de Prentegarde (C120), où la qualité est devenue acceptable en 2004. Mais cette amélioration n’est pas confirmée par les résultats de 2005 qui s’avèrent très mauvais. Cette tendance est donc à confirmer.

- **En période de temps sec sur les affluents du Célé :**

Sur les affluents du Célé, exception faite de la Rance, la qualité est globalement acceptable.

Sur le Bervezou et le Veyre, on observe des contaminations ponctuelles liées aux événements climatiques (périodes pluvio-orageuses). Mais globalement la qualité est bonne.

Le Drauzou, longtemps chroniquement contaminé semble avoir récupéré une meilleure qualité bactériologique (pollution ponctuelle et non plus chronique), à confirmer dans les années à venir.

Enfin, la Rance connaît des pics de pollution bactériologique dès l’amont de Maurs et une contamination chronique en aval de l’agglomération. Elle semble la plus contaminée après le Célé.

- **En tout temps sur le Célé :**

Le Célé connaît des pics de contamination chroniques, liés à des épisodes pluvio-orageux qui provoquent des lessivages de sols (entrainement de germes contenus dans les fumiers et lisiers épandus), de réseaux d’assainissement collectifs et de fossés collectant les rejets d’assainissement...

- **En tout temps sur les affluents du Célé :**

La Rance réagit comme le Célé aux épisodes pluvio-orageux. Les autres affluents résistent davantage mais sont également régulièrement contaminés (dans des degrés moindres toutefois) suite à des événements pluvio-orageux sévères.

- **Evaluation selon le ministère de la santé**

Le ministère de la santé évalue la qualité sanitaire des eaux de baignade avec un système différent du Seq-Eau. Ce système distingue 4 classes de qualité en fonction du pourcentage de résultats non conformes : les eaux de bonne qualité, les eaux de qualité moyenne, les eaux pouvant être polluées momentanément et les eaux de mauvaise qualité.

En conservant ce système initialement en vigueur, l’amélioration de la qualité de l’eau sur le Célé aurait été perceptible dès 2002 et 6 points de suivi (5 sur le Célé et 1 sur la Rance) seraient restés de qualité moyenne en 2005.

Qualité bactériologique : à retenir !

Malgré une tendance à l’amélioration qui se traduit par la récupération d’une eau de qualité satisfaisante en période de temps sec sur la partie aval du Célé et entre Bagnac et Figeac, les pics de contamination accompagnant les périodes pluvio-orageuses déclassent toujours le Célé et la Rance (qualité passable à mauvaise).

Sur les affluents (à l’exception de la Rance), la qualité reste globalement bonne même si des pics sont observés après des épisodes pluvio-orageux conséquents. Le Drauzou a connu une nette amélioration ces dernières années. L’explication de ce phénomène reste toutefois un mystère.

En 2007, au titre du RCDLA, 4 points de suivi supplémentaires vont être créés sur la Ressègue, les Sources de la Rance, le Moulègre et l’Anès. Ils devraient permettre d’apprécier la qualité bactériologique des principaux affluents de la Rance et du Célé côté Cantal.

1.4 Qualité hydrobiologique

Les résultats obtenus sont excellents : forte quantité et diversité taxonomique (de 26 à 40 taxons selon la station et l’indice utilisé) généralement représentée par le ou l’un des meilleurs groupes faunistiques indicateurs (Perlidæ, Perlodidæ, Hepagniidae, Leuctridæ, Glossosomatidæ, suivant l’indice utilisé).
Selon les auteurs, ces peuplements sont caractéristiques des rivières de basse montagne aux eaux courantes, peu polluées, en accord avec la zonation théorique. Ils ajoutent que la dégradation de la qualité hydrobiologique n’est visible qu’à partir de Saint Sulpice (basse vallée du Célé). Elle est liée au ralentissement de l’écoulement des eaux (développement d’espèces de courants calmes) et à une augmentation de la température. Les chauffées concourant à ce ralentissement jouent certainement un rôle indirect dans cette diminution de qualité.

Les données du SATESE et de la MAGE complètent cette étude pour les années suivantes. Les résultats, donnés sous forme de note sur 20, figurent dans le tableau 20 ci-dessous.

<table>
<thead>
<tr>
<th>Cours d’eau</th>
<th>Station</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IBGQ</td>
<td>IBGN</td>
<td>IBGQ</td>
<td>IBGN</td>
<td>IBGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>été</td>
<td>autom.</td>
<td>été</td>
<td>autom.</td>
<td>été</td>
</tr>
<tr>
<td>Célé au Trioulou</td>
<td>C20</td>
<td>20</td>
<td>19</td>
<td>17</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Célé en amont de Figeac</td>
<td>C120</td>
<td>19</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Célé en aval de Figeac</td>
<td>C190</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Célé à St-Sulpice</td>
<td>C280</td>
<td>18</td>
<td>19</td>
<td>14</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Bervezou en aval de Longuecoste</td>
<td>BER 20</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>19</td>
</tr>
<tr>
<td>Bervezou, amont confluence Célé</td>
<td>BERRCD</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>20</td>
</tr>
<tr>
<td>Burlande, aval confluence Sibergues</td>
<td>BUR 30</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>19</td>
</tr>
</tbody>
</table>

Tableau 20 : Qualité hydrobiologique du Célé et de 3 affluents de 2000 à 2004

La qualité est bonne à très bonne sur l’ensemble des points de mesure, avec une tendance à l’amélioration sur le Célé à l’amont de Figeac. La diminution de l’IBGN en 2003 sur la station du Trioulou s’explique certainement par une période prélèvement (février) peu adaptée pour ce type de détermination.

Notons toutefois que le choix des points de prélèvements, pour au moins trois stations, peut biaiser les résultats. En effet les stations RAN 30, C190 et C280 sont en aval immédiat de seuils où l’eau est bien oxygénée, caractéristique indispensable aux peuplements observés. Un nombre plus important de prélèvements, dont certains en amont des seuils pourrait compléter les investigations en confirmant ou infirmant ces premières impressions. Par ailleurs, l’utilisation de nouveaux indices (tels l’indice diatomique) est à l’étude ; ils devraient être réalisés dès les campagnes de mesure de 2007.

Qualité hydrobiologique : à retenir !

La quantité et la diversité de la macrofaune présente dans les cours d’eau du bassin du Célé leur confèrent une qualité hydrobiologique bonne à excellente.
Des doutes persistent toutefois sur la représentativité des points suivis et sur la pertinence des indicateurs utilisés.
1.5 Impacts sur les usages et fonctions

Le paramètre le plus pénalisant est la qualité bactériologique. En 2005, en raison de la pollution bactériologique, l’aptitude à la pratique des loisirs aquatiques est très mauvaise pour tous les points de suivi. Ce paramètre pénalise aussi la production d’eau potable : l’aptitude à cet usage est mauvaise à très mauvaise.

Sur la Rance et le Célé la qualité passable en nitrates pénalise les potentialités biologiques. Sur le Célé en aval de Figeac d’autres paramètres rendent l’aptitude à ces fonctions passable : les matières organiques et oxydables, les matières phosphorées et les matières azotées.

Les micropolluants minéraux ont été mesurés en deux points du Célé en 2005 : à l’aval de Figeac et à Cabrerets. La mauvaise qualité de l’eau pour ce paramètre altère les potentialités biologiques du Célé.

Impacts sur les usages et les fonctions : à retenir !

Malgré une amélioration notable depuis 2000, la qualité bactériologique du Célé et de ses affluents reste mauvaise par temps de pluie. Ceci pénalise certains usages : production d’eau potable, pratique des loisirs aquatiques, abreuvement du bétail...

La qualité physico-chimique n’est pas pénalisante pour ces usages mais la concentration en nitrates, et ponctuellement en micropolluants, diminue les potentialités biologiques des cours d’eau. Ces contaminations n’altèrent pas à ce jour la qualité hydrobiologique qui semble rester bonne à excellente.

La perception des usagers, notamment relative à la turbidoité des eaux et à l’accentuation du phénomène de colmatage des fonds ne semble pas confirmée par les mesures effectuées.
2 Eaux souterraines

Les ressources en eaux souterraines sont très dépendantes de la nature des roches constituant le sous-sol. Selon le caractère perméable ou imperméable des roches concernées, elles seront plus ou moins aptes à stocker de l’eau et à la restituer au milieu superficiel.

2.1 Origine des données

Le fonctionnement des aquifères karstiques du Causse est encore mal connu, surtout dans le sous-système de la vallée du Célé. Pour préciser les circulations d’eaux souterraines le Parc naturel régional des Causses du Quercy a lancé une étude sur la circulation des eaux souterraines dans les systèmes karstiques. L’action proposée doit permettre de recueillir les éléments nécessaires aux hydrogéologues agréés pour délimiter les périmètres de protection des captages de Font del Pito (St Sulpice), de la Pescalerie, de Boucayrac et de Font Polémie (Cabrerets) et pour évaluer l’opportunité de la création d’un nouveau point de captage (le Ressel, Marcilhac/Célé).

2.2 Description des terrains aquifères

Les principaux domaines géologiques identifiés (Causses et Ségala - Châtaigneraie séparés par une zone de transition, le Limargue) sont caractérisés par des types de fonctionnements hydrogéologiques distincts.

2.2.1 Les systèmes karstiques des Causses

Les formations du Jurassique sont le siège d’importantes circulations d’eau souterraines grâce à des systèmes karstiques bien développés.

Figure 4 : Coupe hydrogéologique régionale

Sources : Parc naturel régional des Causses du Quercy, Calligee

Rque: Cette coupe géologique recoupe les causses du Quercy à l'ouest de la vallée du Célé. L’aquifère principal du jurassique n'est pas captif sur la basse vallée du Célé.

Les principales résurgences connues figurent dans le tableau 21 et sont situées sur la carte 11.

Tableau 21 : principales résurgences connues

Sources : SIEE, 1994 et Parc naturel régional des Causses du Quercy, 2006
Ces connaissances sont issues de travaux de traçages réalisés par la DDAF du Lot et le Parc naturel régional des Causses du Quercy (en cours). Des investigations complémentaires sont prévues :
- sur le secteur Sud de Lentillac afin de préciser l'aire d'alimentation de la Pescalerie ;
- sur les secteurs Nord d'Espédaillac et de Quissac.
La liaison entre l'Igue de la Verrerie et l'Ouysse (hors bassin versant du Célé) devra être confirmée par un nouveau traçage. Si cette circulation souterraine était confirmée, cela modifierait les limites Nord-Ouest du bassin versant du Célé.

Le SIAEP de Livernon a également programmé des travaux de multitraçage afin de préciser les contours géographiques des bassins d'alimentation de la source captée de La Doux d’Issepts, dont les eaux souterraines sont mobilisées pour la desserte en eau potable de cette collectivité. Cette première étude a pour but de préciser la vitesse de circulation des eaux souterraines dans le réservoir karstique entre les différentes pertes diffuses du secteur d’Issepts, le Bourg, Assier, Le Bouyssou et l’émergence karstique de la Doux d’Issepts.

- **Concernant les Causses de St-Chels-Gréalou** (au sud du bassin) de récents traçages (1er semestre 2007) ont été réalisés à la demande du SIAEP de la Vallée du Célé, dans le cadre des études préalables à l’établissement des périmètres de protection de captage de la source de Bullac (Boussac). L’ensemble des traçages réalisés sur le Caussa de St Chels a permis de délimiter l’aire d’alimentation de la source de Bullac : sa limite passerait à l’Ouest par la fontaine de Crayssac, au Sud par la limite entre les bassins versants du Lot et du Célé, à l’Est par la limite du bassin versant de la perte de Gouffio et au Nord-Est par une crête topographique.

Par ailleurs, ces traçages ont confirmé l’alimentation de la source de Bual (Espagnac Ste Eulalie), à partir de la doline des Trémouls ainsi que la modification des limites du bassin versant du Célé à prévoir, la Font d’Alan alimentant la source du cirque de Bores, dans la vallée du Lot (aval de Larroque Toirac).

- Enfin, il conviendrait d’effectuer des mesures de débit le long du Célé afin de connaître l’apport réel du Karst sur le Célé (et inversement). Il existe en effet probablement, le long du cours d’eau, des zones de pertes et de restitution, plus discrètes que les résurgences identifiées ci-dessus, et qui sont peu connues. Le Parc naturel régional des Causses du Quercy envisage d’installer des stations de mesures, à Corn, et éventuellement sur la Sagne, dans le cadre de la deuxième phase des études hydrogéologiques de la partie sud du Causse de Gramat.

2.2.2 L’eau souterraine dans le reste du bassin

- **La plaine alluviale du Célé** contient, dans ses alluvions modernes, une nappe alluviale en communication avec le cours d’eau.

Les quelques cours d’eau existants viennent "buter" sur la cuesta qui forme le substratum du Causse, s’y engouffrent et deviennent dès lors souterrains. Les pertes du secteur d’Assier et de Reyrevigne, qui alimentent les sources des Causses, sont dues à ce phénomène. Ceci explique les eaux chargées en argile qui ressortent à Font del Pito et à la Diège.
• Les terrains plutoniques et cristallophylliens du Ségala et de la Châtaigneraie ne renferment que des ressources aquifères réduites et superficielles liées aux phénomènes d’altération et d’arénisation. Du fait de la taille faible de ces aquifères, les captages en source pour l’alimentation en eau potable sont nombreux sur le Ségala et la Châtaigneraie : plus de 50 contre seulement 7 sur les Causses. La circulation de l’eau dans ces terrains se fait de trois manières (BRIL, 2005) :

1. Le long des grandes discontinuités, c’est-à-dire des grandes fractures lorsqu’elles existent ou le long des plus grands dykes. Cette ressource profonde est souvent aléatoire parce que mal connue. Faute d’une vision d’ensemble, les quelques recherches individuelles et dispersées qui ont été faites se sont soldées par des échecs.

2. L’eau souterraine circule également à un ou deux (parfois trois) mètres de profondeur à l’interface entre les altérites et la roche saine (micaschistes sur la commune de Roannes). Cette ressource, superficielle, est très fortement dépendante de la pluviométrie (débits très variables), sujette à toutes sortes d’infiltrations et particulièrement vulnérable (lessivage de zones agricoles amendées ou traitées, infiltration de rejets de toutes sortes...). Cependant du fait de la densité des sources qu’elle génère, elle est très utilisée en châtaigneraie.

3. La troisième ressource est alluviale, mais beaucoup moins importante en Châtaigneraie que dans les grandes vallées du massif cantalien. En effet, les ruisseaux de Châtaigneraie ont plutôt tendance, à l’heure actuelle, à s’enfoncer qu’à alluvionner sauf sur les tronçons les moins pentus. Les zones alluviales sont rares, même si elles peuvent être intéressantes (zones des Petites et du Puits Descargues sur Roannes, hors bassin versant).

Terrains aquifères : à retenir !

Deux types de réservoirs hydrologiques bien différents existent sur le bassin du Célé :
- les réservoirs du Causse correspondant au système karstique très filtrant à grande capacité de réserves souterraines mais susceptibles de connaître d’importantes crues fluvialles souterraines à vidanges rapides ;
- les réservoirs du socle cristallin de faible taille se manifestant sous la forme d’une porosité de fissure de roches consolidées diaclasées et les « réservoirs sols » par lesquels l’infiltration s’opère, mais qui sont vite saturés et imperméabilisés.

2.3 Qualité des eaux souterraines

2.3.1 Suivis ponctuels

2.3.1.1 Evaluation des pollutions nitratées et phosphatées des eaux souterraines dans les bassins karstiques du Célé et du Lot à l’est de Cahors

L’étude de F. HOFFMAN (2000) a permis de classer sept sources des causses selon leur qualité pour les paramètres NO₃ et PO₄³⁻ en adaptant le système SEQ Eau aux eaux souterraines (seuils plus bas compte tenu de la fragilité de ces ressources et de l’impossibilité de recycler les polluants).

6 Les dykes résultent du remplissage d’une fissure par de la lave. Ils peuvent donner un relief volcanique en forme de mur si la roche magmatique solidifiée est ensuite dégagée par l’érosion.
Les valeurs relevées montrent que la qualité de l'eau est bonne avec une pollution en nitrate largement inférieure aux normes AEP (50 mg/L) et à la valeur guide (25 mg/L). Il n’existe pas de normes AEP pour les phosphates mais on peut dire que les teneurs ci-dessus sont proches des teneurs naturelles en phosphates (< 0,1 mg/L).

Seule la résurgence d’Anglanat semble exempte de toute "pollution" aux nitrates et phosphates, mais cette résurgence ne serait représentative que d'une petite zone. C'est pourquoi, dans le cadre du suivi Nitrates, c’est le captage de Piteau à St Sulpice qui a été retenu.

Les résultats de cette étude sont à prendre avec précaution du fait de la forte variabilité dans le temps de ce paramètre hydrogéologique.

2.3.1.2 Campagnes de surveillance des Nitrates

La directive européenne n°91/676/CEE du 12 décembre 1991, concernant la protection des eaux contre la pollution par les nitrates à partir des sources agricoles, impose par son article 6 la surveillance de la teneur en nitrates des eaux douces superficielles et souterraines.

Dans le cadre de cette campagne, 3 stations de mesures en eau souterraines ont été suivies sur le Célé : la Pescalerie à Cabrerets, la Doux d’Issepts et Font del Piteau à St Sulpice.

Ces 3 stations de mesures présentent des concentrations moyennes supérieures à 10 mg/l :
- 12,9 mg/l pour la Pescalerie
- 14 mg/l pour la Doux
- 21 mg/l pour Font del Piteau

Elles ont nettement augmenté depuis la précédente campagne (2000-2001) :
+ 3,7 mg/l pour la Pescalerie
+ 4 mg/l pour la Doux
+ 10,8 mg/l pour Font del Piteau.

Les maxima mesurés y sont respectivement de 20, 16 et 43 mg/l. Ils sont en hausse par rapport à la précédente campagne (12, 12 et 16 mg/l en 2000-2001). Ceci justifie le maintien du bassin aval du Célé en zone vulnérable aux Nitrates.

2.3.1.3 Réseau national de surveillance du contrôle sanitaire sur les eaux brutes

Ce réseau rassemble des informations sur les eaux destinées à la consommation humaine. Les prélèvements sont réalisés sur les eaux brutes des captages utilisés pour l'Alimentation en Eau.
Potable (AEP), par les services Santé Environnement des DDASS. Les prélèvements ne sont pas réguliers et la majorité des stations n'ont fait l'objet que d'une seule mesure ; il convient donc d'être prudent avec les résultats.

Sur les 8 stations en eau souterraines suivie sur la partie Cantalienne du bassin, les prélèvements montrent que la qualité de l'eau pour les paramètres nitrates, phosphore total, pesticides et métaux lourds est bonne à très bonne. Sur une station seulement (Saint-Antoine – 1 prélèvement) les concentrations en Nitrates dépassent 20mg/L. Les concentrations en calcium sont par contre très faibles (< 6mg/L) sur toutes les stations, la qualité de l'eau pour le paramètre minéralisation est de ce fait mauvaise. Les prélèvements ne révèlent que très rarement des contaminations bactériologiques : le seuil de détection n'est dépassé que pour les stations de Boisset, de Marcolès et du Triou Lou, pour lesquelles la qualité reste bonne.

7 stations sont suivies dans la basse vallée du Célé. La qualité physico-chimique est bonne pour ces stations, les concentrations moyennes en nitrates sont comprises entre 10 et 20 mg/L. La concentration maximale mesurée est de 24,9 mg/L à Saint-Sulpice. La qualité bactériologique est en général bonne bien que l'on constate des contaminations ponctuelles sur les stations de Saint-Sulpice (1998), Espagnac Ste-Eulalie (1998) et Cabrerets (1996). Deux stations sont suivies plus régulièrement dans le cadre du réseau départemental de suivi qualitatif des eaux souterraines du Lot : Anglanat et la Pescalerie. Les résultats du suivi sont résumés dans le paragraphe suivant.

2.3.2 Suivis réguliers

<table>
<thead>
<tr>
<th>Couleur</th>
<th>Potabilité</th>
<th>Couleur</th>
<th>Etat patrimonial</th>
<th>Biologie</th>
<th>Qualité de synthèse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eau de qualité optimale pour être consommée</td>
<td></td>
<td>Eau dont la composition est naturelle ou substantielle</td>
<td>Aptitude très bonne</td>
<td>Eau de très bonne qualité</td>
</tr>
<tr>
<td></td>
<td>Eau de qualité acceptable pour être consommée mais pouvant, le cas échéant, être objet d'un traitement de désinfection</td>
<td></td>
<td>Eau de composition proche de l'état naturel, mais détention d'une contamination d'origine anthropique</td>
<td>Aptitude bonne</td>
<td>Eau de bonne qualité</td>
</tr>
<tr>
<td></td>
<td>Eau non potable nécessitant un traitement de potabilisation</td>
<td></td>
<td>Dégénération significative par rapport à l'état naturel</td>
<td>Aptitude passable</td>
<td>Eau de qualité moyenne</td>
</tr>
<tr>
<td></td>
<td>Eau inapte à la production d'eau potable</td>
<td></td>
<td>Dégénération importante par rapport à l'état naturel</td>
<td>Aptitude mauvaise</td>
<td>Eau de qualité médiocre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dégénération très importante par rapport à l'état naturel</td>
<td>Inapte à l'usage</td>
<td>Eau de mauvaise qualité</td>
</tr>
</tbody>
</table>

Figure 5 : Classe de qualité du système Seq-Eau
2.3.2.1 Source de la Pescalerie

- **classes de qualité annuelles** (les altérations qui déclassent sont indiquées par année et par usages et fonctions).

<table>
<thead>
<tr>
<th>Année</th>
<th>Potabilité</th>
<th>Patrimonial</th>
<th>Biologie</th>
<th>Qualité de synthèse</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
<tr>
<td>2003</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
<tr>
<td>2004</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
<tr>
<td>2005</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
</tbody>
</table>

Figure 6 : Qualité de la source de la Pescalerie
Sources : SATESE du Lot

Ce tableau met clairement en évidence que la source du moulin de la Pescalerie a une qualité d’eau sujette à dégradations. Celles-ci étant plus fréquentes en période d’étiage et lors des pluies de reprise de cycle. A noter, que les teneurs en nitrates ne sont pas négligeables, avec une moyenne à 11 mg/l et un maximum à 26 mg/l. De plus, pour ce même paramètre en période de hautes eaux, la moyenne demeure au dessus de 8 mg/l, confirmant ainsi la présence sur ce système d’apports anthropiques significatifs.

Concernant les micropolluants, sur les 8 prélèvements réalisés sur la période étudiée, il n’a été mesuré qu’à une reprise la présence de cuivre, avec une teneur tout juste supérieure au seuil de quantification.

Aucun pesticide n’a été détecté sur cette source.

2.3.2.2 Source d’Anglanat

- **classes de qualité annuelles** (les altérations qui déclassent sont indiquées par année et par usages et fonctions).

<table>
<thead>
<tr>
<th>Année</th>
<th>Potabilité</th>
<th>Patrimonial</th>
<th>Biologie</th>
<th>Qualité de synthèse</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
<tr>
<td>2003</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
<tr>
<td>2004</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
<tr>
<td>2005</td>
<td>Bactériologie</td>
<td>Nitrates</td>
<td>Nitrates</td>
<td>Bactériologie</td>
</tr>
</tbody>
</table>

Figure 7 : Qualité de la source d’Anglanat
Sources : SATESE du Lot

La source d’Anglanat est considérée comme étant un système de référence de l’état naturel. Même si l’eau n’est pas de très bonne qualité bactériologique pour la potabilité, ce qui déclasse la qualité de synthèse, les résultats obtenus confirment la quasi-absence de pression anthropique sur cette ressource.

En effet, pour les nitrates, 89 % des analyses sont inférieures au seuil de détection et ils ne dépassent jamais 3 mg/l. Pour la bactériologie 90 % des analyses sont inférieures au seuil de détection, avec comme valeur maximale 100 germes pour 100 ml.

A noter, que sur les 8 prélèvements complets réalisés sur la période étudiée, il n’a pas été détecté de micropolluants.

Aucun pesticide n’a été détecté sur cette source.
<table>
<thead>
<tr>
<th>Qualité des eaux souterraines : à retenir !</th>
</tr>
</thead>
</table>

Deux sources sont suivies régulièrement sur le bassin du Célé : Anglanat et La Pescalerie. La qualité est globalement bonne mais on constate des cas de contamination sur une d'entre elles, la Pescalerie. La qualité bactériologique est généralement le facteur déclassant la qualité des eaux de cette source. Ces contaminations se retrouvent sur plusieurs autres sources suivies ponctuellement.

Les données issues des suivis effectués dans le cadre de la directive nitrates semblent montrer une dégradation de la qualité physico-chimique (augmentation de la concentration en nitrates) sur les trois sources suivies (La Pescalerie, La Doux, Font del Piteau).

Les eaux souterraines du Cantal, suivies ponctuellement, semblent avoir une bonne qualité, tant physico-chimique que bactériologique. La rareté des prélèvements oblige toutefois à être prudent vis-à-vis des résultats.

Une station sur Saint-Constant est suivie régulièrement depuis 2004 dans le cadre du réseau national de suivi des eaux souterraines. La qualité physico-chimique y est bonne (hormis la minéralisation), mais les contaminations bactériologiques n’y sont pas mesurées.
3 Aspects quantitatifs de la ressource

3.1 Origine des données

Le réseau des stations hydrométriques du bassin du Célé comprend 3 stations de mesures : deux sur le Célé et une sur la Rance. Les stations du Célé, situées à Figeac (Merlançon) et à Orniac (Le Liauzou), sont gérées par la DIREN Midi-Pyrénées. Celle de la Rance, située à Maurs, est gérée par la DIREN Auvergne.

- La station de Figeac (Merlançon) fonctionnait depuis 1937. Elle a été arrêtée en 2005 et remplacée par une nouvelle station. Nous utiliserons les données de l’ancienne car il y a trop peu de données sur la nouvelle.
- La station d’Orniac fonctionne depuis 1967.

D’après la DIREN, la fiabilité des mesures de ces deux stations est bonne.

Notons qu’il y avait aussi eu une station sur le Célé à Maurs, qui a fonctionné de 1913 à 1926, et une à Cabrerets de 1968 à 1973. Nous n’y ferons pas référence.

Les trois stations permettent de caractériser les régimes hydrologiques du Célé. Les données complètes, consultables sur le site de la Banque HYDRO, sont fournies en annexe 3.

S’ajoutent à ces stations hydrométriques deux stations de surveillance des crues : celle de Figeac, qui est située au pont Gambetta et celle de Bagnac.

Ces stations sont situées sur la carte 12 de l’atlas cartographique.

3.2 Régime hydrologique du Célé

Le bassin du Célé, Etude Géographique et hydrologique, HAMILLE - DDE du Lot, 1994
Banque Hydro

Du fait de la pluviométrie nettement plus abondante sur la partie amont du bassin du Célé et de l’absence d’affluent conséquent sur le bassin aval, la partie amont commande très étroitement le régime du bassin aval. Ainsi le bassin aval, qui représente 43 % du bassin à Orniac, n’apporte que 33% du module interannuel et moins de 15 % des débits des mois d’août et de septembre, comme le montre le tableau 23 ci-dessous.

<table>
<thead>
<tr>
<th>Station</th>
<th>HIVER</th>
<th>PRINTEMPS</th>
<th>ÉTE</th>
<th>AUTOMNE</th>
<th>module</th>
<th>VCN 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oct.</td>
<td>nov.</td>
<td>déc.</td>
<td>janv.</td>
<td>fév.</td>
<td>mars</td>
</tr>
<tr>
<td>Merlançon</td>
<td>7.09</td>
<td>12.00</td>
<td>19.70</td>
<td>21.60</td>
<td>23.30</td>
<td>17.80</td>
</tr>
<tr>
<td>Orniac</td>
<td>11.20</td>
<td>18.70</td>
<td>30.00</td>
<td>31.80</td>
<td>35.30</td>
<td>26.40</td>
</tr>
<tr>
<td>Apport du</td>
<td>36.7%</td>
<td>35.8%</td>
<td>34.3%</td>
<td>32.1%</td>
<td>34.0%</td>
<td>32.6%</td>
</tr>
<tr>
<td>bassin aval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 23 : Débits moyens mensuels calculés sur 36 ans (Orniac) ou 55 ans (Merlançon)

Les hautes eaux se situent globalement au mois de février et l’étiage moyen en août. Toutefois, les valeurs de débit fournies dans le tableau ci-dessus confirment que le Célé connaît quatre saisons
hydrologiques :

- **L’hiver, de fin octobre à début mars** : débit toujours soutenu et qui tend à augmenter jusqu’à la fin de la saison pour atteindre un débit moyen maximum en février de 23,3 m3/s à Merlançon et 35,3 m3/s à Orniac. Ce débit occasionne des crues fréquentes répétées et rapides, parfois très violentes et très inondantes (dernière crue cinquantenale de décembre 2003).

- **Le printemps, de mars à début Juin** : les précipitations, bien qu’importantes notamment en mai, n’ont plus le même impact sur le régime de la rivière, du fait de nouveaux facteurs qui limitent leur effet (augmentation de la température, pleine poussée végétative). Cette période se caractérise par une tendance globale à la diminution des débits malgré des crues toujours fréquentes et marquées. Il faut désormais des épisodes pluvieux durables et/ou abondants pour que surviennent de fortes crues. Le mois de mai, très souvent bien arrosé, tend à freiner une baisse trop rapide des débits, si bien que l’on ne pourra souvent parler de phase de tarissement qu’à partir de juin. Les débits se maintiennent ainsi en moyenne à 13,7 m3/s à Merlançon et 21,9 m3/s à Orniac en mai (données hydrologiques de synthèses 1950-2004 ou 1971-2006).

- **L’été, de juin à septembre** : le Célé entre en phase de tarissement et de vidange des nappes, avec un débit minimal en août. Des épisodes pluvieux, même prononcés ne peuvent inverser la tendance : le débit ne cesse de décroître jusqu’en août pour atteindre 2 à 4 m3/s à Merlançon et 3 à 5 m3/s à Orniac. Cette période connaît des extrêmes parfois remarquables (sécheresses de 1905 ou crues inondantes de juillet 1958 et 1993). Ainsi, des crues localisées peuvent être provoquées par la formation d’une croûte de battance qui provoque des ruissellements importants lors des pluies estivales de forte intensité.

- **L’automne, de durée très brève** : il débute par une stabilisation des débits, la phase de tarissement s’interrompent, puis se poursuit par une relance des débits souvent multipliée par dix, parfois par vingt, en l’espace de trois, deux, voire un jour ! Ce changement est dû à la multiplication des jours de pluie associée à une diminution de l’évapotranspiration et aux épisodes pluvio-orageux fréquents à cette période.

Régime hydrologique du Célé : à retenir !

Soumis aux mêmes contraintes météorologiques et climatiques que le Lot, le Célé est également caractérisé par d’importants débits au cours des mois de saison fraîche (d’octobre à mai) et de fortes pertes par évapotranspiration en été. En revanche il apparaît plus turbulent avec une sensibilité marquée aux crues. Cette sensibilité confère aux communes riveraines un risque d’inondation avéré.

3.3 Les Crues

3.3.1 Caractéristiques des crues du bassin du Célé

- **Les crues historiques** :

La station d’annonce des crues de Figeac (pont Gambetta) est en service continu depuis 1941 et elle recense les crues importantes depuis plus de 160 ans. Elle est la mieux renseignée sur le Célé.
11 crues supérieures à 3 m y ont été recensées entre 1843 et 1998 (cf. tableau 24).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur d’eau (en m)</td>
<td>4,65</td>
<td>3</td>
<td>3,3</td>
<td>3,15</td>
<td>4,3</td>
<td>3,95</td>
<td>3,7</td>
<td>3,4</td>
<td>3,05</td>
<td>3,75</td>
<td>3,16</td>
</tr>
</tbody>
</table>

Tableau 24 : Crues historiques du Célé – station du pont Gambetta à Figeac

La station de Merlançon doit être prise avec davantage de précaution pour ce qui concerne l’analyse des crues : cette station se situe à l’exutoire du bassin amont, aux pluies abondantes. Elle ne peut donc quantifier correctement le débit d’une rivière en crue qui s’écoule sur plusieurs centaines de mètres de large. Ainsi des crues recensées à Merlançon (Banque Hydro) ne sont pas toujours perceptibles à la station du pont Gambetta. C’est le cas de la crue du 3 décembre 2003 qui a atteint 3,85 m à la station de Merlançon (hauteur maximale instantanée connue par la banque HYDRO), mais qui n’a pas dépassé les 3 m à la station du pont Gambetta.

- **Période de retour des crues inondantes** :

Les périodes de retour des crues inondantes sont analysées avec la loi de Gumbel :
- Q_j correspond à un calcul de crue utilisant les débits moyens journaliers en entrée.
- Q_{ix} correspond à un calcul de crue utilisant les débits instantanés maximums mensuels en entrée.
- Q correspond à un calcul de crue utilisant les débits instantanés maximums annuels en entrée.
Les données de la station d’annonce des crues du pont Gambetta permettent de déterminer la fréquence des crues inondantes, à partir des débits maximums annuels.

<table>
<thead>
<tr>
<th>Période de retour</th>
<th>Q (m3/s)</th>
<th>H (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ans</td>
<td>340</td>
<td>4,30</td>
</tr>
<tr>
<td>50 ans</td>
<td>300</td>
<td>3,70</td>
</tr>
<tr>
<td>20 ans</td>
<td>265</td>
<td>3,40</td>
</tr>
<tr>
<td>10 ans</td>
<td>230</td>
<td>3,00</td>
</tr>
<tr>
<td>5 ans</td>
<td>200</td>
<td>2,60</td>
</tr>
<tr>
<td>2 ans</td>
<td>144</td>
<td>2,00</td>
</tr>
<tr>
<td>1 an</td>
<td>84</td>
<td>1,25</td>
</tr>
</tbody>
</table>

Tableau 25 : Fréquence des crues inondantes à Figeac, station du pont Gambetta

Sources : SOGREAH et DDE du Lot

Pour la station de Merlançon, la banque hydro fournit l’analyse à partir de Q_j et de Q_{ix}.

<table>
<thead>
<tr>
<th>Période de retour</th>
<th>Q_j (m3/s)</th>
<th>Q_{ix} (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ans</td>
<td>non calculé</td>
<td>non calculé</td>
</tr>
<tr>
<td>50 ans</td>
<td>210</td>
<td>250</td>
</tr>
<tr>
<td>20 ans</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>10 ans</td>
<td>160</td>
<td>190</td>
</tr>
<tr>
<td>5 ans</td>
<td>140</td>
<td>170</td>
</tr>
<tr>
<td>2 ans</td>
<td>100</td>
<td>130</td>
</tr>
<tr>
<td>1 an</td>
<td>non calculé</td>
<td>non calculé</td>
</tr>
</tbody>
</table>

Tableau 26 : Caractéristiques des crues à Figeac, station de Merlançon

Sources : Banque HYDRO

Les résultats de la station des Amis du Célé à Orniac sont aussi analysés à partir de Q_j et de Q_x.
<table>
<thead>
<tr>
<th>Période de retour</th>
<th>Qj (m3/s)</th>
<th>Qix (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ans</td>
<td>non calculé</td>
<td>non calculé</td>
</tr>
<tr>
<td>50 ans</td>
<td>490</td>
<td>610</td>
</tr>
<tr>
<td>20 ans</td>
<td>420</td>
<td>520</td>
</tr>
<tr>
<td>10 ans</td>
<td>360</td>
<td>440</td>
</tr>
<tr>
<td>5 ans</td>
<td>300</td>
<td>370</td>
</tr>
<tr>
<td>2 ans</td>
<td>210</td>
<td>260</td>
</tr>
<tr>
<td>1 an</td>
<td>non calculé</td>
<td>non calculé</td>
</tr>
</tbody>
</table>

Tableau 27 : Caractéristiques des crues à Orniac, station des Amis du Célé
Sources : Banque HYDRO

La station d’annonce des crues de Bagnac est en service depuis 1975, elle recense deux crues fortes : décembre 1981 (3 m) et janvier 1994 (2,72 m). Cette mise en service récente ne permet pas d’avoir une série hydrométrique suffisamment longue et représentative pour réaliser une analyse. Depuis peu, deux stations d’observation complémentaires, mesurant uniquement la pluviométrie, fonctionnent, elles sont situées à St Cirgues (Lot) et à Leynhac (Cantal).

- **Géographie générale des crues inondantes** :

Les crues, dans leur genèse mais surtout dans leur manifestation, prennent des aspects bien différents sur tout le linéaire du Célé, en fonction des conditions géomorphologiques, géologiques et climatiques.

A l’extrême amont du bassin, les crues sont soudaines, courtes et violentes. Elles affectent le Célé directement et indirectement par le biais de l’un ou plusieurs de ses affluents. Dans cette configuration en gorge l’écoulement du Célé et de ses affluents est concentré, rapide et violent.

Cet écoulement turbulent et rapide s’atténue en partie en arrivant dans le “fossé de Maurs” - Saint-Santin mais au prix d’une zone inondée bien plus étendue, lors des crues d’ordre décennal. Le surcreusement de lit ordinaire du Célé limite la propagation latérale des crues annuelles mais, une fois les berges franchies, l’inondation étale ses eaux de faible hauteur, souvent stagnantes, venant se mêler au trop plein de la nappe phréatique.

L’écoulement de la Rance est assez semblable : après un écoulement en gorge au sein d’une zone inondable réduite, alimenté par plusieurs affluents à l’écoulement torrentiel (Moulègre, Anès) ; le cours d’eau connaît une forte rupture de pente et un étalage des crues au niveau du bassin d’effondrement de St Santin de Maurs.

Au-delà du “fossé de Maurs” le domaine fluvial inondable évolue : la profondeur du chenal et la présence de bourrelets de berges déjà bien constitués laissent au lit ordinaire une importante capacité pour contenir un débit de crue entre ses deux berges. Le lit majeur est régulier et assez rectiligne, presque toujours situé en rive droite et souvent délimité par le remblai de la ligne de chemin de fer. Le Veyre et le Bervezou, ruisseaux en gorge avec des plaines d’inondation très réduites (mis à part à la hauteur de Maurs pour le Veyre et en amont de la confluence avec le Célé sur le Bervezou) viennent grossir le Célé.

Dans le centre de Figeac, les berges sont protégées de façon continues et l’évolution du lit est fortement conditionnée par les protections des berges. Le caractère maçonné des berges entraîne une accélération de l’écoulement et donc des gradients de vitesse élevés, particulièrement érosifs, même en l’absence de crues importantes. A l’aval immédiat de Figeac, au niveau du stade, le Célé est très large et le courant ralentit fortement.

A la sortie de Figeac, les crues décennales et pluri-décennales connaissent une nouvelle dynamique qui se traduit par :
- Un écoulement plus calme que dans les gorges du secteur amont.
- Un écoulement qui malgré la largeur de la plaine d’inondation (jusqu’à 1km au niveau de la confluence avec le Drauzou) est doté d’une certaine vigueur, la couche d’eau atteignant jusqu’à 1m voire davantage. Il ne s’agit plus d’eaux stagnantes, le Célé en crue étant
suffisamment puissant pour charrier bois morts, petits troncs d’arbres, balles rondes et autres matières végétales. Le Drauzou rejoint le Célé vers Camboulit après un écoulement dans une plaine d’inondation relativement large.

- L’apparition de chenaux de crue latéraux au lit ordinaire de plus en plus prononcés vers la vallée en canyon, d’autant plus puissant que la crue est importante. Au cours de ces crues décennales, certains bourrelets de berges ne sont pas submergés et favorisent la dispersion du flux d’écoulement par ces chenaux de crue. La présence de merlons de protection et de remblais dans des zones inondables entre Figeac et Ceint d’Eau freine l’expansion des crues rive droite et dans une moindre mesure rive gauche.

A partir de Sainte-Eulalie, la plaine inondable se rétrécit, s’engorge et ne cesse de s’encaisser en allant vers la confluence avec le Lot. Seules les plaines de Brengues et de la Merlie (près de Monteils) offrent aux crues une zone d’expansion importante.

En arrivant dans le secteur de Sauliac, les crues présentent une nouvelle dynamique : plus concentrées spatialement, elles deviennent plus violentes, sans comparaison toutefois avec l’écoulement torrentiel de l’amont-bassin. Ces crues, partiellement atténuées par la distance qui sépare ce secteur de l’amont (écroûtement des crues), ainsi que par les nombreux méandres qui ralentissent leur progression peuvent prendre une vigueur nouvelle lorsque le Karst connaît lui aussi des crues fluviatiles souterraines. Certains terrains situés en bordure de vallée peuvent d’ailleurs être victimes de crues karstiques très localisées et très courtes issues d’un fort abat d’eau lors d’orages sur le Causse ou sur le Limargue.

3.3.2 Les dommages économiques

Les dommages les plus fréquents sont liés à l’inondation des parcelles mises en cultures mais les habitations sont aussi touchées.

En amont de Figeac, les maisons sont, pour la plupart, situées hors de la plaine alluviale inondable. Par contre, certains villages sont entièrement soumis aux risques de crues : Boisset, Saint Constant, Bagnac, Maurs … Par exemple, la commune de Saint Constant a subi des dégâts importants, suite à la crue de juin 1958. Les témoignages montrent également que la commune de Boisset a subi des dégâts matériels conséquents lors de la crue de juillet 1993 : camping municipal inondé, pont endommagé, passerelle du Moulin de Ramon emportée. La commune de Maurs a aussi subi des dommages, que ce soit au cours de la crue de mai 1981, de mai 1992 (passerelle submergée, parking du centre de vacances de la Châtaigneraie inondé, quartier de la gare inondé avec nombreux dégâts) ou de décembre 1993. La pression urbaine récente rend le risque d’inondation encore plus aigu.

La ville de Figeac a, quant à elle, été touchée par la crue de mai 1994 : les quartier des Carmes et du lycée ont été submergés, occasionnant d’importants dégâts sur le réseau pluvial de la ville. La dernière grande crue (décembre 2003) a été caractérisée par une montée des eaux et une décrue très rapides. Cette courte durée explique en partie le peu de dégâts occasionnés par cette crue. Toutefois, sur Figeac, les dégâts ont été accentués dans certains quartiers par la remontée des eaux de la rivière par les réseaux d’assainissement.

Les riverains de Figeac et de Bagnac ont été relativement marqués par cet événement hydrologique. Il s’en est suivi des essais de protection (rehausse d’anciens merlons) sur la partie aval de la ville et des travaux de curage et de consolidation de berges effectués en partie par la commune de Figeac.

A noter également les inquiétudes des habitants de Figeac et des villages en aval, relatives à la construction de la déviation et à la pose de remblais en lit majeur dans le secteur de Ceint d’eau. Enfin, à signaler que le barrage de Guirande (retenue d’irrigation) est classé comme « intéressant la sécurité publique » : une rupture de sa digue risquant d’avoir des conséquences notables à l’aval (et notamment à l’entrée de Figeac).
3.3.3 **La prévision des crues**

Le Ministre de l’Ecologie et du Développement Durable a engagé par circulaire du 1er octobre 2002, la réforme des dispositifs d’annonce des crues. Compte tenu des enjeux, il s’agit pour l’Etat de se doter de services de prévision des crues fiables. Ces services attachés à des territoires doivent avoir une taille suffisamment importante pour assurer un fonctionnement et une technicité proportionnés aux enjeux.

Cette réforme a donc abouti à la création :
- de 22 Services de Prévision des Crues (SPC) répartis sur le territoire national, en remplacement des 52 Services d’Annonce des Crues (SAC) préexistants,
- du Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations, chargé d’apporter une assistance technique aux SPC.

C’est le service de prévention des crues Tarn-Lot, basé à Montauban, qui assure la surveillance du niveau du Célé depuis janvier 2005.

Les missions liées à l’annonce des crues évoluent très sensiblement sur les points suivants :
- le passage de l’annonce à la prévision (modèles de prévision, observation et expertise des bassins) ;
- une valorisation des expériences (analyse du fonctionnement des modèles et méthodes de prévisions, évolution des enjeux, gestion de la crise) ;
- la mise en place de scénarios de crues.

Pour répondre à ces nouvelles missions une amélioration des moyens mis en œuvre est aussi prévue :
- des renforts en moyens ;
- une amélioration du réseau de collecte ;
- la modernisation du réseau et l’implantation de stations complémentaires ;
- le développement des modèles de prévision.

3.3.4 **La prévention du risque**

3.3.4.1 **Contexte juridique**

La loi du 22 juillet 1987 relative à l’organisation de la sécurité civile, à la protection de la forêt contre l’incendie et à la prévention des risques majeurs pose le principe du droit à l’information pour les populations soumises aux risques majeurs.

Le Dossier Communal Synthétique a pour objet l’information et la sensibilisation de la population sur les risques encourus. C’est un document d’information réglementaire. Il représente les risques naturels et technologiques menaçant le territoire de la commune. Il est réalisé par les services préfectoraux et notifié par arrêté préfectoral au maire, afin que ce dernier puisse élaborer le document d’information communal sur les risques majeurs.
La loi du 22 juillet 1987 a aussi institué (art 40.1 à 40.7, modifiés par la loi du 2 février 1995) la mise en application des Plans de Prévention des Risques Naturels Prévisibles (PPRNP ou PPR).

L’objet des PPR, tel que défini par la loi est de :

- Délimiter les zones exposées aux risques en tenant compte de la nature et du risque encouru ;
- Délimiter les zones non directement exposées aux risques mais où les constructions, ouvrages, aménagements, exploitations et activités pourraient aggraver les risques ou en provoquer de nouveaux ;
- Définir, dans les zones mentionnées ci-dessus, les mesures relatives à l'aménagement, l'utilisation ou l'exploitation des constructions, ouvrages, espaces existants mis en culture.

Il convient également de rappeler que la loi n° 95.101 du 2 février 1995 relative au renforcement de la protection de l’environnement reprend, en son titre II – chapitre II, les dispositions relatives aux plans de prévention des risques énoncées dans la loi de 1987.

3.3.4.2 Procédure et contenu

Les PPR traitent des risques d’incendie, de mouvement de terrains et d’inondation (PPRI).

Les PPR sont prescrits par le(s) préfet(s) du (des) département(s) concerné(s) sur un périmètre spécifié lors de la prescription. Le projet de PPR est soumis à l’avis consultatif des conseils municipaux des communes puis à enquête publique. À l’issue de cette enquête, le PPR est approuvé par le préfet, puis s’impose de plein droit en tant que servitude d’utilité publique et est annexé au PLU (Plan Local d’Urbanisme).

Le Plan de Prévention des Risques est constitué :

- d’une note de présentation,
- de documents graphiques présentant les zones exposées au risque,
- de documents graphiques définissant les zones faisant l’objet des dispositions réglementaires,
- d’un règlement et de ses annexes éventuelles.

Dans les zones directement exposées, tout type de construction est interdit ou doit respecter des conditions prescrites. Dans les zones où des constructions pourraient provoquer un risque de manière indirecte, des mesures d’interdiction ou des prescriptions peuvent également être prévues.

3.3.4.3 Les PPRI du bassin du Célé

Il y a 3 PPRI sur le bassin du Célé, dont deux ont été approuvés et un est en cours de validation.

- Le PPRI Célé amont Cantal couvre les communes de Maurs, St Etienne de Maurs, Boisset, St Constant et le Triouloù, il a été approuvé le 27 Février 2002.
- Le PPRI Célé amont Lot couvre les communes de Boussac, Camboulit, Béduer, Figeac, Viazac, St Jean-Mirabel, Linac, Bagnac, il a été approuvé le 20 janvier 2003.

Le risque d’inondation est défini par l’ensemble de ces cartes. Elles permettent d’établir les zonages de l’aléa :
- La zone bleue (B) comprend la totalité des zones submersibles où l’aléa est faible, avec des hauteurs de submersion inférieures à 1m et des vitesses inférieures à 0.5 m/s.
- La zone verte (V) est une zone réservée à l’expansion des crues, qu’il s’agisse des zones d’aléa fort (V1) ou d’aléa faible (V2). Elle est peu ou pas urbanisée, l’activité agricole y est dominante.
- La zone rouge (R) comprend la totalité des zones submersibles où l’aléa est fort.

Les dispositions applicables dans chacune de ces zones sont aussi comprises dans le PPRI.

Les deux PPRI approuvés aboutissent à la même conclusion : le bassin du Célé est soumis au risque d’inondation, qui prend plusieurs formes liées à la géographie du site :

- De grandes crues de type fluvial plus ou moins prévisibles affectant la plaine alluviale du Célé ou de la Rance, où sont concentrés des enjeux urbains (Figeac, Bagnac, Maurs). L’hydrologie et la géomorphologie de la plaine étant bien connues, l’appréciation du risque d’inondation est tout à fait fiable, et se traduit par un jeu de cartes regroupant une carte hydrogéomorphologique, une carte des Plus Hautes Eaux Connues (PHEC), et une carte des champs de vitesse des PHEC.

- Ces crues ont une dynamique bien différente dans les secteurs en gorge des vallées du Moulègre, de la Rance et du Célé (entre Bagnac et Figeac). C’est une dynamique torrentielle affirmée qui augmente l’impact des crues sur Figeac, située juste à l’aval de la « gorge ». Dans ces tronçons linéaires, l’aléa est fort mais les enjeux réduits, la surveillance du développement urbain doit être importante pour éviter une forte vulnérabilité future.

- Des crues soudaines et torrentielles d’affluents secondaires, imprévisibles et touchant des secteurs où la pression urbaine est grandissante. Dans ce dernier cas, l’hydrologie des crues est peu connue et la prévision difficile, faute de stations de mesure sur ces petits bassins et du fait du caractère aléatoire et torrentiel des événements. Les cartes hydrogéomorphologiques sont utiles à l’appréciation du risque, car elles donnent l’extension précise de ces crues torrentielles. Les cartes de hauteurs des crues de référence, lorsqu’elles ont pu être réalisées, donnent une image fidèle des submersions pour les crues concernées, mais il faut garder en mémoire le caractère changeant de ce type de crue et les modifications rapides des aménagements dans ces petites vallées périurbaines.

3.3.5 Etudes, travaux ou projets de protection

3.3.5.1 Ouvrages de protection

Un seul ouvrage de protection existe à ce jour : un « remblai » qui protège la zone industrielle de la Farrayrie. Situé à l’aval de la ville de Figeac, « cet ouvrage » a pour conséquence d’extraire de la zone d’expansion des crues une partie du lit majeur de la rivière et de reporter l’étallement des hautes eaux en rive gauche où se trouvent des exploitations agricoles et des habitations.

Les zones d’expansion des crues constituent un moyen efficace de protéger les habitations : elles permettent d’étaler les eaux de crue et d’éviter des hauteurs d’eau trop élevées ou des vitesses trop importantes. Elles doivent être préservées telles qu’elles.
Des merlons ont également été créés le long du Célé, à l’aval de Figeac. Ils permettent de s’affranchir des crues de faibles amplitude mais pas des crues plus importantes (décennales). Une tendance au rechargement de ces merlons a été observée et récemment limitée par l’action des services de la police de l’eau.

3.3.5.2 Travaux sur berges et dans le lit

La mauvaise gestion des boisements de berges et des milieux aquatiques peut entraîner une obstruction d’une partie de la section d’écoulement et aggraver ainsi les phénomènes de crues (de faible amplitude notamment). La violence des crues du Célé a pour conséquence l’arrachage et le charriage de bois morts qui viennent se coincer dans les ouvrages de la rivière, créant des obstacles à l’évacuation des eaux et mettant en danger ces ouvrages ainsi que les terrains riverains. Toutefois, lors d’une grande crue inondante, l’obstruction partielle du lit mineur n’a qu’une incidence très limitée sur le niveau des eaux. Elle peut à l’inverse avoir des répercussions notables en matière d’éroSION des berges.

La restauration et l’aménagement des berges en cours sur le Célé et programmés sur la Rance devraient donc contribuer à diminuer l’impact des crues. Le Plan de Gestion des milieux aquatiques en cours d’élaboration (Cf. chapitre 2 paragraphe 4.4.4) devrait également permettre de restaurer de meilleures conditions d’écoulement.

3.3.5.3 Études hydrauliques de la ville de Figeac

En 2004, la mairie de Figeac a missionné le bureau d’étude Sud Aménagement Agronomie pour qu’il réalise une étude diagnostic sur le fonctionnement sédimentaire du Célé à la traversée de Figeac. Cette étude avait pour objectif de mieux cerner les phénomènes de morphologie fluviale et de transport solide sur le Célé, de façon à :
- comprendre les problèmes et dysfonctionnements recensés (effondrement de berges, érosions…) ;
- trouver une solution efficace et économique pour lutter contre ces perturbations ;
- engager une politique globale de gestion des érosions dans l’agglomération.

Cette étude conclut à la tendance naturelle du Célé à former des petits bancs de gravier en lit mineur. Cette tendance est régulièrement contrecarrée en zone urbaine (régalage des dépôts), ce qui accentue les dysfonctionnements au niveau de la traversée de Figeac (surcreusement du lit, nécessité de protéger régulièrement les pieds des berges maçonnées). Les auteurs rappellent le caractère naturellement mobile d’un cours d’eau et préconisent une préservation / restauration de la dynamique fluviale dans les zones naturelles ; et un contrôle dans les zones où elle pose problème, par une gestion régulière des dépôts et des bois morts. Les travaux de grande ampleur y sont déconseillés.

Une étude plus particulière a été menée au niveau du plan d’eau du Surgié. Elle évalue notamment les conséquences du clapet mobile mis en place en 2001 : il semble peu probable que la mise en place du clapet restaure totalement le transit sédimentaire initial. L’étude recommande de revoir le dimensionnement des ouvrages de dissipation (bassin à l’aval du seuil) de façon à limiter davantage l’énergie de l’écoulement à l’aval de l’aménagement.

Sud Aménagement Agronomie a aussi mené en 2006 une étude sur l’impact d’une levée en terre à
l'amont du seuil du moulin de Laporte. Plusieurs scénarii ont été envisagés pour limiter l'impact des crues inondantes dans ce secteur urbanisé :
- suppression du seuil en toute ou partie ;
- équipement du seuil (clapets) ;
- destruction des merlons rive gauche...
Mais, cette étude n'a pas encore abouti à des propositions de travaux.

Les crues : à retenir !

Le Célé est doté de deux stations d'annonces des crues ; l'une, située à Figeac, réhabilitée depuis le 1er janvier 2005, constitue une station d'alerte ; la seconde, placée à Bagnac-sur-Célé, remplit uniquement le rôle de station d'observation. Deux stations d'observation plus sommaires ont, par ailleurs, été installées récemment à Leynhac (Cantal) et St Cirgues (Lot). Elles devraient permettre d'intégrer dans les prévisions plus d'information sur les sous bassins du Veyre et de la Rance.

C'est le Service de prévision (SPC) des Crues Tarn-Lot basé à Montauban qui assure la surveillance du niveau du Célé, depuis janvier 2005. En complément du système d'alerte, qui n'est pas efficace pour prévenir les crues torrentielles, celles concernant les petits bassins ou les têtes de bassin, la demande a été exprimée de développer un réseau de transmission de l'information qui permettrait d'avoir une vision globale des crues.

Dans le domaine de la prévention des crues, 2 PPRi ont été réalisés (Célé amont Cantal et Célé amont Lot), 1 est en cours (basse vallée du Célé).

Les crues de 1994 et de 2003 ont ravivé la crainte d'une augmentation des dégâts provoqués par les inondations du fait de l'urbanisation croissante (imperméabilisation des surfaces) et des projets à venir (déviation de Figeac notamment). Des initiatives individuelles (réhabilitation de merlons) ont été conduites ces dernières années pour réduire l'inondation de certains terrains, au risque de déconnecter du lit majeur certaines zones d'expansion de crues. Les collectivités ont aussi mené des travaux (curages) pour rassurer les riverains.
3.4 Les Étiages

L'Entente interdépartementale du bassin du Lot a commandé en 1997 à la Compagnie d'Aménagement Rural d'Aquitaine, une étude pour la réalimentation du Lot et du Célé. La phase 1 de cette étude visait à préciser le volume nécessaire au soutien du débit en période estivale et les mesures à mettre en œuvre pour le satisfaire : une gestion plus économique de l'eau et/ou une réalimentation. Les conclusions de cette étude étaient les suivantes :
- les étages semblent plus sévères à Merlançon qu'à Orniac ;
- le Débit Objectif d'Étiage (DOE) et le Débit de Crise (DCR) fixés par le SDAGE pour Orniac sont corrects mais pourraient être revus légèrement à la baisse s'il était fait abstraction de l'usage « navigation », et complétés par des DOE et DCR à Merlançon ;
- une réserve d'eau de 11 Mm3 en amont de Figeac (sur le Bervezou ou le Veyre) permettrait d'assurer des conditions de navigation satisfaisantes. Mais cette solution, qui présentait un intérêt principal pour la navigation, a par la suite été abandonnée en raison de son coût et des conséquences écologiques.

Le Plan de Gestion des Étiages (PGE) pour le bassin du Lot a été lancé 7 ans plus tard par l'Entente interdépartementale. Sur le bassin du Lot, le PGE fixe les règles de partage de la ressource en eau en situation normale et en « situation de crise », ainsi que les moyens de son contrôle. Il vise ainsi à réduire la fréquence et l'intensité des situations de crise. Ce plan de gestion prend en compte le bassin du Célé qui, bien qu'étant relativement autonome et dont le débit n'est pas soutenu, présente des apports essentiels au respect des objectifs fixés pour le Lot aval.

Le Schéma d'Aménagement et de Gestion des Eaux du Célé devra s'appuyer sur le PGE pour fixer les objectifs quantitatifs ou définir les scénarii de gestion quantitative.

3.4.1 Caractéristiques des basses eaux

Les données des basses eaux sont analysées avec la loi de Galton. La période (pour le calcul de VCN) est l'année d'étiage (du 1er janvier au 31 décembre).

Le VCN30 est le débit minimal sur 30 jours consécutifs. Le VCN10 est le débit minimal sur 10 jours consécutifs. 1/5 signifie que les débits ne descendent en dessous de cette valeur qu'une année sur cinq.

Le paramètre "10 % du module" correspond au plancher fixé par la Loi pêche pour les secteurs soumis à de longues périodes d'étiage artificiels. Ce seuil est fondé sur des critères écologiques.

<table>
<thead>
<tr>
<th>Station</th>
<th>Cours d'eau</th>
<th>10 % du module</th>
<th>VCN30 1/5 naturel (m³/s)</th>
<th>VCN10 1/5 naturel (m³/s)</th>
<th>DOE</th>
<th>DCR</th>
<th>Débits moyen août</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orniac</td>
<td>Célé</td>
<td>1.92</td>
<td>1.74</td>
<td>1.43</td>
<td>1.2</td>
<td>0.80</td>
<td>3.78</td>
</tr>
<tr>
<td>Merlançon</td>
<td>Célé</td>
<td>1.26</td>
<td>1.47</td>
<td>1.03</td>
<td>-</td>
<td>-</td>
<td>3.28</td>
</tr>
<tr>
<td>Maurs</td>
<td>Rance</td>
<td>0.37</td>
<td>0.31</td>
<td>0.31</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 28 : Caractéristiques des basses eaux

Sources : Entente Vallée du Lot

Sur le bassin du Lot, le Célé est le seul cours d'eau non réalimenté, contrôlé par un point nodal, situé à Orniac. Les Débits Objectif d'Étiage et Débits de Crise fixés par le SDAGE pour le Célé à Orniac, sont respectivement de 1,2 m³/s et de 0,8 m³/s. Le niveau actuel du DOE est très largement satisfait : le VCN10 (plus faible débit moyen de 10 jours consécutifs) de la quinquennale sèche (valeur en
dessous de laquelle les débits ne descendent que 20 fois par siècle) est supérieur à 80 % du DOE. Cet objectif n’est donc pas très discriminant pour les étiages ordinaires. La Rance est par contre, classée rivière déficitaire dans le PGE (attention toutefois aux statistiques peu fiables, la station de mesures étant relativement récente). Les affluents de la Rance semblent subir les mêmes pressions.

L’étude menée lors de la première étape d’élaboration du PGE du Lot (« Etat des lieux ») a mis en évidence différents effets de la période d’étiage :

- **Sur les milieux naturels**, l’analyse d’IBGN (Indice Biologique Global Normalisé) montre que le niveau actuel des étiages n’altère pas la qualité excellente de la faune benthique ni sur le Célé, ni sur ses affluents (note de 17 à 20/20)

- **Pour les activités de baignade**, il existe encore un problème certain de qualité bactériologique des eaux du Célé (suivi effectué par le SATESE 46, la MAGE 15 et l’Association pour l’Aménagement de la Vallée du Lot). La faible quantité d’eau à l’étiage rendrait l’autoépuration plus rapide en temps et en distance (résultats suivi qualité 2003). Par ailleurs, suite aux faibles débits d’étiage, les sites de baignade ont souvent une profondeur inférieure à 1m et des vitesses de courant inférieures à 0.3 m/s (dû aux débits inférieurs à 11 m3/s en période estivale), ce qui est considéré comme un critère de sécurité pour les nageurs.

- **En ce qui concerne la vie piscicole et la pêche**, en période d’étiage, les débits du Célé paraissent tout juste suffisants. La réalimentation ne paraît donc pas nécessaire, sauf lors d’années exceptionnelles (comme en 2003 ou 2005).

- **Pour la pratique du canoë-kayak**, le problème de manque d’eau à l’étiage en année normale existe, en particulier dans le secteur situé entre La Merlie et Cabrerets. Sur le Veyre, il ne peut se pratiquer qu’en période de hautes eaux.

NB : À noter toutefois que les faibles niveaux d’eau accentuent la perception des fluctuations de niveaux liées au « turbinage » des moulins. Ce phénomène peut alors présenter un impact significatif sur les activités de loisirs (canoë, pêche, baignade) comme sur les milieux aquatiques. Par ailleurs, les bas niveaux d’eau sont jugés suffisamment pénalisants au niveau « visuel ou en matière de salubrité publique » pour que les communes aient eu recours à la création ou à l’entretien de chaussées rehausssant les niveaux d’eau dans la traversée de nombreux bourgs. On citera notamment : Figeac, St Constant, Bagnac, Marcilhac, St Sulpice, Brengues, projet à Sauliac…

3.4.2 La sensibilité aux usages préleveurs

3.4.2.1 Simulations du Plan de Gestion des Etiages du bassin du Lot

Dans le PGE, chaque point de contrôle est testé avec trois scénarios de débit objectif correspondant à 10 % de module, au VCN 10 naturel (c’est le débit moyen le plus faible 10 jours consécutifs dans l’année qu’aurait le cours d’eau sans l’impact des prélèvements) et au VCN30. Les résultats montrent que le respect de 10 % du module partout serait très exigent et ne pourrait être atteint que par des opérations de soutien d’étiage. La restriction d’usages n’a d’impact significatif sur le respect des objectifs que pour des objectifs voisins du VCN 10 ou du VCN 30 mais ce dernier objectif est très
exigent sur le niveau de ces restrictions.

Le tableau 29 ci-dessous propose à partir de la valeur du VCN 10 comme débit de référence, le calcul du déficit observé en année sèche (une année sur cinq) en situation naturelle et en situation influencée par les prélèvements, et un rappel des consummations prises en compte. Pour l’agriculture le taux de consommation a été simulé année après année et calé sur l’examen des consummations de 2003. Il est pris égal à 50 % d’une consommation agronomique optimale d’une culture de maïs.

Tableau 29 : Sensibilité aux usages préleveurs : scénario VCN10 naturel un an sur 5

<table>
<thead>
<tr>
<th>Station</th>
<th>Cours d’eau</th>
<th>VCN 10 1/5 naturel</th>
<th>Déséquilibre juin/octobre (1000 m³)</th>
<th>part des usages dans le déficit</th>
<th>Consommation cumulée en amont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ornic</td>
<td>Célé</td>
<td>1.43</td>
<td>123</td>
<td>180</td>
<td>32 %</td>
</tr>
<tr>
<td>Merlançon</td>
<td>Célé</td>
<td>1.03</td>
<td>43</td>
<td>73</td>
<td>42 %</td>
</tr>
<tr>
<td>Maurs</td>
<td>Rance</td>
<td>0.31</td>
<td>56</td>
<td>64</td>
<td>12 %</td>
</tr>
</tbody>
</table>

Sources : Entente Vallée du Lot

Selon le PGE, le poids des usages consommateurs sur le Célé est modeste en proportion et pèse peu sur les résultats obtenus. La part des usages dans l’éventuel déficit est surtout observable à la station de Merlançon. Les volumes prélevés par l’irrigation à partir des cours d’eau étant pour la plupart concentrés en aval de Figeac, ce sont surtout les prélèvements AEP qui creusent le déficit éventuel en eau dans le Célé et ses affluents à l’amont de Figeac.

Il nous semble toutefois que cette analyse doit être complétée. En effet, les auteurs du PGE n’ont pas pris en compte les prélèvements pour l’abreuvement du bétail dans cette simulation, considérant qu’ils étaient compris dans l’AEP. Compte tenu des caractéristiques du bassin du Célé (nombre important d’animaux et pratique fréquente de l’abreuvement au cours d’eau), il nous semble important d’évaluer ces prélèvements. De plus, des disparités importantes existent entre les sous bassins. Pour ces deux raisons nous proposons des calculs complémentaires pour estimer les prélèvements par sous bassin.

3.4.2.2 Estimation par sous bassin

Les consummations d'eau superficielle par sous bassin en période d'étiage (juin à octobre) sont estimées sur la carte 13. Pour réaliser cette carte les consummations théoriques ont été évaluées de la façon suivante :

- La consommation en eau de la population a été calculée en appliquant une consommation moyenne de 150 L/jour par habitant pour la population (permanente et temporaire) non raccordée à un assainissement collectif. On estime que la consommation par jour par habitant est plus proche de 100 L/jour dans les secteurs ruraux, mais en prenant en compte une consommation maximale, on englobe une partie des consummations d'eau potable non domestiques (consummations des petites entreprises dépendant de la distribution d'eau potable publique) qui ne peuvent être évaluées. A l’instar des calculs du PGE, nous avons considéré que l’eau distribuée à la population raccordée était entièrement restituée au milieu par les stations d’épuration et entièrement « consommé » par les systèmes d’assainissement autonomes.

- La consommation pour l’abreuvement des animaux est estimée à partir du nombre d’animaux et de valeurs moyennes de consommation d’eau par jour par animal indiquées dans le PGE (caprins : 5 L/j, ovins : 7.5 L/j, bovins : 16.5 L/j, gros bovins : 60 L/j et porcins : 16.5 L/j).

- La consommation en eau pour l’irrigation (hors retenues collinaires) est estimée à partir des données redevances de l’Agence de l’Eau. Sur le bassin du Célé presque tous les volumes prélevés font l’objet d’une mesure, un seul prélèvement est calculé sur une base forfaitaire. On
estime que ces données correspondent aux prélèvements réels à 10 % près : seuls les petits irrigants (< 3000 m3) ne sont pas connus.

- La consommation des principales industries est estimée à partir des prélèvements recensés à l'Agence de l'Eau. On estime que 7 % de l'eau prélevée est réellement consommée, le reste étant restitué au milieu (sources : PGE).

Trois de ces prélèvements ont été considérés comme uniformes sur l'année et un ratio de 5/12 leur a été appliqué pour obtenir la consommation à l'étage. Pour l'irrigation, nous avons considéré que les prélèvements annuels étaient concentrés sur les 5 mois d'étage.

<table>
<thead>
<tr>
<th>Domestique</th>
<th>Abreuvement</th>
<th>Industries</th>
<th>Irrigation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>464 452</td>
<td>712 182</td>
<td>4 886</td>
<td>402 157</td>
<td>1 583 678</td>
</tr>
</tbody>
</table>

Part des prélèvements totaux

| Prélèvement net (m3) | 29.3 % | 45 % | 0.3 % | 25.4 % |

Tableau 30 : Prélèvements nets à l'étage

C'est sur la basse vallée du Célé que les prélèvements nets totaux sont les plus importants : 47 % des prélèvements pour l'irrigation du bassin se font sur ce sous bassin et la population non raccordée y est importante. Vient ensuite le sous bassin Rance-Arcambe, sur lequel les prélèvements destinés à l'irrigation sont aussi importants. Sur le sous bassin du Veyre les prélèvements sont essentiellement utilisés pour l'abreuvement des animaux. Globalement ce poste représente 45 % des prélèvements. Lorsque les prélèvements sont ramenés à l'hectare c'est sur les sous bassins Rance-Arcambe, Célé-Ressègue et Célé-Aujou qu'ils se révèlent les plus importants.

3.4.3 Propositions du Plan de Gestion des Etiages

Ne seront ici exposées que les propositions qui concernent directement ou indirectement le bassin versant du Célé.

- **Modification du DOE et fixation de Débits Objectifs Complémentaires**

Le PGE propose d'augmenter le DOE à Orniac à 1,5 m3/s, et de fixer un Débit d'alerte à 1,2 m3/s. En effet le DOE doit permettre la coexistence normale des usages, or à 1,2 m3/s l’usage canoë est compromis, le seuil de 1,5 m3/s est donc plus approprié. Ceci permettrait par ailleurs d’obtenir une image plus fidèle de la réalité concernant le fonctionnement du bassin et notamment de mieux prendre en compte les arrivées depuis la partie amont (Cantalienne).

De plus, à partir d’une analyse croisée entre hydrologie naturelle et pression de prélèvements, le PGE propose de fixer des Débits Objectifs Complémentaires à Maurs et à Figeac.

<table>
<thead>
<tr>
<th>Station</th>
<th>Cours d'eau</th>
<th>10 % du module</th>
<th>VCN30 1/5 naturel (m3/s)</th>
<th>VCN10 1/5 naturel (m3/s)</th>
<th>DOE ou DOC proposé</th>
<th>Débit d'alerte</th>
<th>DCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orniac</td>
<td>Célé</td>
<td>1.92</td>
<td>1.74</td>
<td>1.43</td>
<td>1.5</td>
<td>1.2</td>
<td>0.80</td>
</tr>
<tr>
<td>Merlançon</td>
<td>Célé</td>
<td>1.26</td>
<td>1.47</td>
<td>1.03</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maurs</td>
<td>Rance</td>
<td>0.37</td>
<td>0.31</td>
<td>0.31</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 31 : Les débits seuils proposés par le PGE

Sources : Entente Vallée du Lot
• Révision du cadre réglementaire des prélèvements agricoles
En matière d’action sur les autorisations de prélèvements agricoles, il existe aujourd’hui une réelle difficulté dans le département du Lot qui permet d’éviter à la majorité des irrigants déclarés avant 1995, la révision de leur droit. Le PGE recommande que les procédures d’autorisation favorisent la démarche mandataire. En cas d’impossibilité d’engager une révision des autorisations permanentes de prélèvement agricole, le PGE recommande la mise en place d’un suivi actif par l’État des déclarations de prélèvements annuelles.
Le PGE propose qu’aucune autorisation d’irriguer nouvelle ne soit accordée sur les sous bassins non réalimentés déficitaires (Rance) ou juste à l’équilibre (cas du Célé), si elle aggrave le risque hydrologique du sous bassin.

• Mobilisation de nouvelles ressources
La première option est de sécuriser les usages directement sans passer par une réalimentation des cours d’eau en substituant les prélèvements directs dans la rivière ou sa nappe d’accompagnement par des prélèvements dans une autre ressource (réservoir artificiel ou ressource souterraine).
La seconde option (projet de réalimentation sur le Bervezou), déjà écartée dans les conclusions de l’étude sur la réalimentation du Lot et du Célé (CARA, 1997), a été jugée inadaptée aux problématiques de gestion des étiages, dans l’état actuel des milieux, de la consommation et des usages. A noter toutefois que suite à la sécheresse de 2003, le SIAEP Sud Ségala a relancé la discussion sur la possibilité de créer une réserve qui permettrait d’assurer son approvisionnement en eau.

• Action de sensibilisation des propriétaires de barrages, seuils, chaussées
Le PGE propose notamment la signature de conventions de gestion en période d’étiage pour supprimer ou limiter les effets des turbinages (fluctuation des niveaux d’eau) en période sèche.

Sur les têtes de bassins le PGE propose des mesures spécifiques :

• Intégration des besoins en eau potable des élevages dans les Schéma Départementaux d’Alimentation en Eau Potable (SDAEP)
Une zone test pour l’application de méthodologies regroupant les producteurs d’eau potable et les éleveurs est notamment envisagée sur le Ségala.

• Mise en place d’une politique d’incitation à "l’abreuvement"
Par une approche collective visant à développer des ressources nouvelles ; des actions en faveur de la récupération des eaux de pluies dans les bâtiments ; et la mise en place de compteurs pour les ressources autres que le réseau AEP.

• Sensibilisation sur les procédures de déclaration - autorisation pour les prélèvements agricoles
Mettre en place une information générale auprès de la profession agricole concernant le niveau d’obligation réglementaire pour les prélèvements dans un cours d’eau, dans sa nappe d’accompagnement ou dans un plan d’eau ou canal alimenté par ce cours d’eau ou cette nappe.

• Renforcement de la prise en compte des zones humides et des milieux aquatiques
Le PGE recommande une prise en compte du contexte global dans les dossiers d’incidences concernant les opérations entraînant une modification ou une destruction des milieux humides et aquatiques. Il propose aussi que ces opérations ne soient autorisées ou acceptées que si le document d’incidence montre qu’elles ne remettent pas en cause l’équilibre et la valeur biologique du milieu, ou si les mesures compensatoires prévues dans le projet rétablissent cet équilibre et cette valeur biologique. Le PGE encourage de plus un inventaire exhaustif des zones humides “non remarquables” de plus d’un demi hectare. Cet inventaire est en cours sur le Célé.

• Inciter aux économies d’eau dans la distribution publique
Le PGE recommande que les SDAEP intègrent dans leurs priorités d’actions un renforcement des politiques d’économie et sollicitent en priorité les ressources les moins fragiles à l’étiage. Le PGE insiste aussi sur les problèmes de pertes des réseaux.
• Maintien et renforcement du réseau hydrométrique patrimonial

Le PGE propose que le réseau hydrométrique géré par les DIREN soit complété par de nouvelles stations. Il demande aussi que les données sur les niveaux des sources captées pour l'AEP soient valorisées afin d'évaluer le niveau des ressources diffuses du bassin.

Les étiages : à retenir !

Le Célé constitue un bassin relativement autonome avec une pression de prélèvements faible. Cependant ses apports sont essentiels au respect des objectifs fixés pour le Lot aval.

Malgré quelques années difficiles (2003 et 2005), le Célé n'est pas considéré comme un cours d'eau déficitaire. Les débits mesurés permettent globalement de satisfaire les différents usages et de maintenir un milieu naturel équilibré. Une attention particulière doit toutefois être portée sur la partie amont du bassin (Ségala et Châtaigneraie) où les réserves sont de tailles réduites et très fragiles car intimement liées aux précipitations.

Compte tenu des prélèvements actuels et des besoins pour les différents usages, la réalimentation du Célé n’est pas proposée dans le PGE. Toutefois, le PGE propose de modifier le DOE à 1,5 m3/S à Orniac et de créer 2 DOC (Débits d'objectif complémentaires) de 1m3/s à Merlançon et 0,4 m3/s à Maurs. Ceci permettrait d'obtenir une image plus fidèle de la réalité concernant le fonctionnement du bassin et notamment de sa partie amont (Cantalienne).

Le SAGE devra se positionner sur les valeurs seuil ainsi que sur les mesures proposées par le PGE pour la gestion quantitative de la ressource. Un travail de quantification et de localisation des prélèvements réels sera un préalable nécessaire à l’application de telles mesures.
4 Milieux aquatiques et naturels

4.1 Origine des données

Les inventaires réalisés pour la détermination des ZNIEFF, des sites Natura 2000 et autres dispositifs de protection, ont permis d’acquérir des connaissances sur les habitats et les espèces présentes sur le bassin du Célé.

Les connaissances sur les zones humides étaient toutefois très réduites, aucune d'entre elles ne figurant dans l'inventaire national. Pour combler ce manque de connaissance l'Association pour l’Aménagement de la Vallée du Lot a lancé un inventaire de caractérisation des zones humides sur l'ensemble du bassin. Cet inventaire est à ce jour achevé, l'exploitation des données est en cours.

La Loutre a fait l'objet d'un suivi mené par l’Office National de la Chasse et de la Faune Sauvage du Lot.

Les informations sur les peuplements piscicoles sont issues de relevés piscicoles effectués par le Conseil Supérieur de la pêche et les Fédérations de pêche du Cantal et du Lot.

4.2 Milieux naturels

4.2.1 Milieux naturels protégés

La carte 14 recense les milieux et espèces remarquables et les mesures de protection existants sur le bassin du Célé.

4.2.1.1 Zones Naturelles d’Intérêt Ecologique Faunistique et Floristique (ZNIEFF)

Les ZNIEFFs :
L'inventaire ZNIEFF est un inventaire national établi à l'initiative et sous le contrôle du Ministère de l'Environnement.

Cet inventaire différencie deux types de zones :

- *Les ZNIEFFs de type 1*, généralement de superficie limitée, sont caractérisées par la présence d’espèces, d’association d’espèces ou de milieux rares, remarquables ou caractéristiques du patrimoine naturel national ou régional. Ces zones sont très sensibles à des équipements ou des transformations, même de faible importance.

- *Les ZNIEFFs de type 2* sont constituées de grands ensembles naturels qui, sur le plan
Les écosystèmes biologiques sont riches ou offrent des potentialités importantes, tels que massifs forestiers, vallées, plateaux, estuaires. Elles peuvent inclure plusieurs zones de type 1 ponctuelles et des milieux intermédiaires de valeur moindre mais possédant un rôle fonctionnel et une cohérence écologique et paysagère.

Il importe, dans ces zones, de respecter les grands équilibres écologiques, en tenant compte notamment du domaine vital de la faune sédentaire ou migratrice.

L'inventaire ZNIEFF est un outil de connaissance du patrimoine national français. Il ne constitue pas une mesure de protection juridique directe. Toutefois, l'objectif principal de cet inventaire réside dans l'aide à la décision en matière d'aménagement du territoire vis à vis du principe de la préservation du patrimoine naturel.

ZNIEFFs sur le bassin du Célé :

Le bassin du Célé compte 32 ZNIEFFs de type I et 3 ZNIEFFs de type II sur son territoire, regroupées sur les sous bassins Basse vallée du Célé, Célé-St Perdoux, Célé-Aujou et Rance. Leur liste complète est disponible en annexe 4.

Parmi les espèces animales remarquables recensées dans ces ZNIEFFs, on peut citer :

- **chez les libellules** :
 - Cordulie splendide
 - Gomphe à cercoïdes fourchus
 - Cordulie à corp fin

![Figure 8 : Espèces remarquables de libellules](http://perso.orange.fr/ramieres/libellules/sommaire.html)

- **chez les poissons** :
 - Chabot
 - Toxostome
 - Lamproie de planer

![Figure 9 : Espèces remarquables de poissons](http://natura2000.clicgarden.net/especes/IDX1.html)

- **chez les rapaces** (inféodés aux versants rocheux) on peut citer le Faucon pèlerin, le Circaète jean le blanc, l'Aigle botté, le Hibou grand duc mais aussi (plus généralement) le Busard saint martin et l'Autour des palombes.

Parmi les espèces végétales, l'Osmonde royale, l'Androsème officinale et la Mélique Penchée figurent sur la liste des espèces menacées en Auvergne.

Les ZNIEFFs sont en cours de réactualisation sur le département du Lot. De nombreuses propositions de zonage, résultant notamment de l’inventaire des zones humides réalisé sur le bassin du Célé, devraient être faites sur les territoires actuellement dépourvus de ZNIEFFs.
4.2.1.2 Sites Natura 2000

Le programme Natura 2000 :
Constitué des Zones de Protection Spéciales (directive « oiseaux » de 1979) et des Zones Spéciales de Conservations (directive « habitats » de 1992), le réseau Natura 2000 a pour objectif de préserver la diversité biologique sur le territoire de l’Union Européenne.

Dans ces zones, les états membres s’engagent à maintenir ou rétablir dans un état de conservation favorable les habitats naturels et les habitats d’espèces de faune et de flore sauvages d’intérêt communautaire. Pour ce faire, ils peuvent utiliser des mesures réglementaires, administratives ou contractuelles. La circulaire DNP/SDEN n°2004-1 préconise notamment l’évaluation des incidences des projets susceptibles d’affecter un site Natura 2000.

Le but de la démarche est de trouver un point d’équilibre entre les activités humaines et la protection de la nature. Pour cela, l’Etat français a décidé d’établir pour chaque site, localement et en concertation avec tous les acteurs concernés, un plan de gestion appelé "Document d’objectifs".

Natura 2000 dans le bassin hydrographique :
Dans le cadre de la directive Habitat, trois Sites d’Importance Communautaire ont été identifiés sur le bassin du Célé.

➢ La Basse vallée du Célé :
Proposé comme SIC en décembre 1998, ce site s’étend sur environ 42 km entre Bouziès et Corn. Couvrant près de 35 km², ce site présente un intérêt majeur de par la diversité des milieux naturels présents : landes et pelouse sèches, habitats rocheux, prairies de fauche en fond de vallée et milieux aquatiques. Tous ces milieux abritent de nombreuses espèces remarquables, dont certaines sont d’intérêt communautaire. On recense ainsi sur le site trois odonates (cf. page précédente), trois poissons (cf. page précédente) et huit chiroptères d’intérêt communautaire.

L’état des lieux de la zone concernée a été rédigé par l’opérateur local (Parc naturel régional des Causses du Quercy) et les objectifs du site ont été définis. Le Document d’Objectifs du site devrait être validé fin juin 2007. Les enjeux définis dans ce document, ainsi que les outils et actions spécifiques au dispositif Natura 2000, sont complémentaires aux objectifs et enjeux portés par le SAGE Célé. Une prise en compte mutuelle et réciproque des deux projets est donc nécessaire.

➢ La zone centrale du causse de Gramat :
Également situé dans le département du Lot, ce site proposé en mai 2002 couvre un total de 64 km², dont une partie seulement fait partie du bassin versant du Célé. Cette zone présente un ensemble de pelouses sèches pâturées qui correspondent à une mosaïque d’habitats prioritaires de l’annexe I de la directive habitat :
- Groupement de Bromotalia riches en Orchidées (19 espèces recensées) ;
- Groupement du Thero-Brachypodion hébergeant notamment la franco-ibérique protégée Arenaria controversa.

Elle abrite également une riche entomofaune de pelouses à affinité méridionale ou orophile comprenant diverses espèces remarquables d’orthoptères, de lépidoptères et de coléoptères ; ainsi qu’une chiroptérofaune diversifiée (12 espèces recensées dont 7 dans l’annexe II de la directive habitat). Notons également la présence d’une importante population de Lézard ocellé.

Le Document d’Objectifs de ce site a été validé, la phase de mise en œuvre est lancée. L’opérateur local de ce site est l’ADASEA du Lot.

➢ Vallées et coteaux thermophiles de la région de Maurs :
Ce troisième site (117 ha) se situe dans la partie cantaliennne du bassin, sur les communes de Saint-Santin-de-Maurs et de Montmurat. Proposé comme SIC en avril 2002, il est caractérisé par la présence d’une grande quantité d’orchidées rassemblées sur une petite surface, ainsi que d’espèces animales en limite de répartition (car thermophiles). Le Document d’Objectifs de ce site a été validé, et des actions d’animation ont été menées. Mais, dans l’attente de nouveaux contrats agricoles, aucune action concrète n’a été conduite. L’opérateur local de ce site est le CPIE de Haute Auvergne.
4.2.1.3 Sites classés et inscrits

- Les différentes mesures de protection :
 La loi du 2 mai 1930 permet de protéger et conserver la qualité des monuments naturels et des sites d'intérêt artistique, historique, scientifique, légendaire ou pittoresque.

Sites classés :
Les sites classés concernent des territoires d’intérêt national et sont créés par arrêté du ministre chargé de l’environnement. Le classement est le moyen d’assurer avec le plus de rigueur la protection des sites naturels de grande qualité. Après classement, l’autorisation du ministre chargé de l'environnement est obligatoire pour entreprendre des travaux susceptibles de détruire ou de modifier l'état ou l'aspect des lieux.
Un site classé n’a pas de zone périphérique définie, aussi les dispositions de protection s’arrêtent-elles aux limites du site. Toutefois, les aménagements réalisés en périphérie immédiate d’un site classé doivent respecter les caractéristiques de celui-ci.

Sites inscrits :
Les sites inscrits concernent des territoires d’intérêt régional et sont créés par arrêté du ministre chargé de l’environnement. L’inscription a pour but la conservation de milieux et de paysages dans leur état actuel, de villages et bâtiments anciens. Toute modification de l’état ou de l’aspect des lieux et tous travaux ne peuvent être faits par le propriétaire sans qu’ils aient été déclarés 4 mois à l’avance et qu’ils aient fait l’objet d’une autorisation après avis de l’Architecte des Bâtiments de France (ABF).

- Les sites sur le bassin du Célé :
 De par leur qualité paysagère ou architecturale, plusieurs secteurs du bassin du Célé ont été inscrits à l’inventaire des sites (au titre de la loi du 2 mai 1930) :
 - vallée du Célé de Bagnac à Bouziès (34 900 ha)
 - abords de l’église de Marcilhac
 - abords du village de Fons (231 ha)
 - château et rive gauche du Célé à Cabrerets (8 ha)
 - ensemble urbain de Figeac (42 ha)
 - château de Murat et ses abords à St Etienne de Maurs
 Une portion de la rive gauche du Célé à Figeac a été classée en 1943.
 De nombreux monuments classés (26) ou inscrits (35) à l’inventaire des monuments historiques jalonnent également le bassin, et en particulier la vallée du Célé (château, moulins, dolmens, églises), lui conférant une dimension particulière et un intérêt culturel, architectural et historique certain.

4.2.1.4 Arrêtés Préfectoraux de Protection de Biotope (APPB)

Les Arrêtés Préfectoraux de Protection de Biotope (ou arrêtés de biotope) sont créés à l’initiative de l'Etat par le préfet de département. Ces arrêtés visent à la conservation de l’habitat d’espèces protégées.
Ils se traduisent par un nombre restreint d’interdictions, qui sont accompagnées dans la moitié des cas de mesures de gestion légères, destinées à éviter la perturbation de milieux utilisés pour l’alimentation, la reproduction et/ou le repos des espèces qui les utilisent. Parmi les activités susceptibles d’être concernées, les textes mentionnent, de façon non exhaustive, l’écobuage, le brûlage des chaumes, le brûlage ou le broyage des végétaux sur pied, la destruction des talus, des haies et l’épandage de produits antiparasitaires.

La superficie protégée est extrêmement variable (de moins de 1ha à plus de 1000 ha). La présence d’une seule espèce protégée sur le site concerné, même si cette présence se limite à certaines périodes de l’année, peut justifier un arrêté.

Dans le cadre des politiques départementales de valorisation des Espaces Naturels Sensibles, de nombreux sites, tels que la hêtraie atlantique, les vergers de la Châtaigneraie, le Liauzu et le patrimoine bâti à Marcilhac (Cazelles) ont été expertisés. Dans le Cantal, la mission ENS confiée au CEPA (Conservatoire des Espaces et Paysages d'Auvergne) et au CPIE (Centre Permanent d'Initiatives pour l'Environnement) a souligné l'intérêt du classement d'une châtaigneraie, mais il n'y a pour l'instant aucun site potentiel.

- **Les ENS du département du Lot :**
 Aucun ENS n'a été retenu sur le bassin hydrographique du Célé, coté Lot. Cependant deux espaces naturels sont considérés d'intérêt local : les anciennes gravières d'Espagnac-Sainte-Eulalie et le site du Liauzu. Les cazelles de Marcilhac-sur-Célé ont été proposées comme zone d'étude pour les ENS, mais n'ayant pas reçu le soutien de la commune, elles n'ont finalement pas été retenues.

- **Les ENS du département du Cantal :**
 - Les pelouses à orchidées de Saint-Santin-de-Maurs, reconnues comme ZNIEFF de type 1 (*Buttes calcaires du Bassin de Maurs*) et site Natura 2000 (*Vallées et Coteaux thermophiles de la région de Maurs*), ont été classées Espace Naturel Sensible (ENS) en 1996. Situées sur la Châtaigneraie cantalienne, les pelouses s'étendent sur 11 ha au sommet de la butte de la Garenne (407 m d'altitude) et offrent une richesse floristique et faunistique remarquable. Du point de vue botanique, ce site abrite des plantes rares à l'échelle du département, dont certaines bénéficient d'une protection régionale. En particulier, on note la présence d'un cortège important d'orchidées (plus d'une trentaine) dont quelques hybrides remarquables. Parmi les espèces protégées : Céphalanthère rouge, Epictatis à petites feuilles, Lis martagon, Ophrys brun, Ophrys mouche, Ophrys bécarse, Ophrys araignée, Orchis militaire, Orchis singe…

La butte abrite des espèces animales en limite nord de leur répartition géographique, telles que le Lézard ocellé et trois insectes méridionaux : l’Empuse, la Petite cigale et l’Ascalaphe. Elle accueille également une avifaune variée, nicheuse (Sylvidés, Turdidés), avec la présence d’oiseaux méridionaux (Hibou petit duc, Loriot) ou de passage (rapaces, Grand corbeau…).

- **Le Domaine du Moulin du Fau situé à 1 km du centre bourg de Maurs présente un intérêt patrimonial important : valeurs paysagères, culturelles, écologiques et économiques.**
 Classé ENS depuis octobre 2004, il s'étend sur près de 7 ha. Bordé par la Rance, ce domaine comprend un étang de pêche (1ère catégorie), des prairies, un ancien moulin à grains ainsi que le réseau hydraulique qui lui permettait de fonctionner, et une grange en ruine. Symbole de l’histoire économique et sociale de Maurs et de la Châtaigneraie, le Moulin du Fau, constitue un témoin de la vitalité de Maurs (l’un des moulins les plus importants du pays, en activité jusqu’en 1952), de l’économie de la Châtaigneraie, et de l’importance des moulins dans les pays agricoles.
4.2.1.6 Zones d'Importance pour la Conservation des Oiseaux (ZICO)

A ce jour, aucune ZICO n’a été définie sur le bassin hydrographique du Célé.

4.2.2 Le Parc naturel régional des Causses du Quercy

L'objet d'un Parc naturel régional repose sur les 5 fondements suivants :
- protéger le patrimoine naturel et culturel,
- contribuer à l’aménagement du territoire,
- contribuer au développement économique, social, culturel et à la qualité de la vie,
- réaliser des actions expérimentales ou exemplaires dans les domaines précités

Les orientations et les mesures de gestion, protection et mise en valeur du Parc naturel régional sont définies par une charte constitutive propre à chaque parc. Elles doivent être appliquées par l'Etat et les collectivités locales adhérentes à la charte.

Le Parc naturel régional des Causses du Quercy a été créé le 1er octobre 1999. Situé au nord-est de la région Midi-Pyrénées dans le département du Lot, il se compose de 97 communes pour 175 717 ha et 26 000 habitants. La basse vallée du Célé fait partie du territoire du parc, soit 34 communes et plus de 4 480 habitants du bassin versant.

Le Parc naturel régional des Causses du Quercy s’est donné pour objectifs prioritaires :
- Protéger et mettre en valeur les ressources naturelles et paysagères ;
- Préserver et valoriser les patrimoines culturels ;
- L'agriculture et le forêt : assises du maintien et de la reconquête ;
- Le commerce, l'artisanat, les entreprises : contribution essentielle au projet de territoire ;
- Accueillir : concevoir un nouveau tourisme ;
- L'amélioration de la vie quotidienne;
- L'éducation et la transmission.

La préservation du patrimoine naturel des Causses du Quercy est un enjeu pour lequel les signataires de la Charte, qui court entre 1999 et 2009, se sont engagés en définissant :
- des Sites d'intérêt Ecologique Exceptionnel (SIEE) ;
- des Zones d’Intérêt Ecologique Majeur (ZIEM)

Sur ces zones, des actions de préservation des milieux naturels sont à entreprendre tout particulièrement.

Quatre SIEE ont été identifiés sur le bassin du Célé : les carrières de Puy Blanc, la vallée du Célé à St-Sulpice, la vallée du Célé de Sauliac à Conduchêt et la vallée de la Sagne.

Sur ces 4 zones des engagements ont été pris par le Conseil Régional Midi-Pyrénées, le Conseil Général du Lot et les communes concernées. Ceux-ci se sont engagés, entre autres, à intégrer ces sites dans la politique des Espaces Naturel Sensibles du département, à ne pas aider des projets qui pourraient porter atteinte aux sites, à favoriser la préservation du patrimoine naturel et la mise en œuvre d’une gestion conservatoire concertée.

Dans l’Article 10 de la Charte, le Parc s’engage à préserver la ressource en eau. Pour cela plusieurs actions sont menées sur le territoire du Parc :
- Pour préserver la qualité de l'eau et lutter contre les pollutions domestiques, le Parc naturel régional a mis en place un Service Public d'Assainissement Non Collectif (SPANC).
- Afin de gérer et protéger les rivières de son territoire le Parc s'est doté d’une "Cellule Rivières" susceptible de planifier et d’encadrer des travaux de restauration et d’entretien des cours d’eau. Ce fut notamment le cas pour les travaux de restauration des berges du Célé, effectués par les communautés de communes Lot-Célé et Vallée et Causse, dans le cadre du Contrat de rivière Célé.
entre 2000 et 2006.
- Le Parc mène en collaboration avec les organismes qui interviennent dans la connaissance et la gestion de l'eau et des milieux souterrains, des études sur les circulations d'eau souterraines.

Le Parc intervient aussi sur le bassin du Célé, en tant qu'opérateur local de la zone Natura 2000 “Basse vallée du Célé” et en tant que chargé de la mise en place de plans de gestion sur les gravières d'Espagnac et les anciennes tuileries de Puy Blanc.

4.2.3 Zones Humides

Sources :
- Bilan des prospections effectuées en 2004 - CPIE de Haute Auvergne, 2005

4.2.3.1 Rôle des zones humides

L'article 211-1 du code de l'environnement, qui instaure l'obligation légale de protection des zones humides, les définit comme « terrains, exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre, de façon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l’année ».

A l’interface entre les milieux terrestres et les milieux aquatiques superficiels et souterrains, les zones humides – marais, tourbières, prairies humides – sont des milieux particulièrement riches et intéressants, mais fragiles et actuellement soumis à de fortes pressions anthropiques.

Leur richesse et leur intérêt tiennent tout autant à leur caractère naturel et à leur valeur patrimoniale qu’à leurs fonctions qui participent à la gestion qualitative et quantitative de la ressource en eau. Les principales fonctions sont les suivantes :

- **Fonction biologique** : biodiversité faunistique et floristique, zones refuges servant à l'alimentation et à la reproduction d'espèces originales intéodées aux milieux humides.

- **Fonction épuratrice** : les zones humides sont des filtres naturels biologiques et physiques participant à l'amélioration de la qualité de l'eau par autoépuration.

- **Fonction hydrologique** : les zones humides sont des zones tampons, véritables « éponges » régulant les débits par stockage de l'eau (pluies, hautes eaux, zones d'épandage des crues dans le cas des prairies humides en lit majeur) et assurant le soutien des débits d'été (i lors de basses eaux).

Plusieurs recherches sur les zones humides ont été initiées à l'échelle européenne, nationale (plan d'actions zones humides) ou régionale. Ces inventaires ne concernent toutefois que les zones humides de taille ou d'intérêt régional, national voire international. Pour les autres (importance "locale"), on constate un manque évident d'informations sur leur localisation, leur taille, leur nombre, leurs fonctions ou encore leur biodiversité.

4.2.3.2 Inventaire des zones humides du bassin du Célé

Selon les connaissances des naturalistes, le bassin du Célé ne comprenait pas de zones humides, de tourbières ou d'ensemble de milieux humides dont la taille ou la composition leur conférait une importance nationale ou communautaire. C’est pourquoi, aucun recensement global (à l’échelle du bassin) et aucune mesure de protection particulière n’avait été entrepris avant le lancement en 2004 d’une étude d’inventaire par l’Association pour l’Aménagement de la Vallée du Lot, dans le cadre du Contrat de rivière Célé.
Cette étude devait apporter un niveau de connaissance minimum sur la densité, le fonctionnement hydrologique, la richesse biologique (inventaire sommaire basé sur les groupements floristiques et la présence d’espèces emblématiques), la rareté, l’état et les menaces qui pèsent sur les zones humides du bassin hydrographique du Célé.

Elle comprenait :
1. la réalisation d’un inventaire exhaustif des zones humides du bassin (ou regroupement de zones humides) dont la taille excède ou est égale à ½ hectare ;
2. la caractérisation de ces espaces (composition floristique, fonctionnement hydrologique, espèces emblématiques, menaces) ;
3. la hiérarchisation des milieux étudiés en fonction de leur rôle, de leur spécificité, de leur biodiversité et des menaces de dégradation...

Ces données s’avèrent indispensables pour évaluer l’intérêt de chacun de ces milieux et élaborer des programmes de gestion ou de protection des espaces les plus remarquables.

4.2.3.3 Résultats intermédiaires de l’étude

L’inventaire des zones humides est à ce jour achevé, la base de donnée devrait être finalisée au second semestre 2007. Toutefois, l’analyse des données recueillies sur les deux sous bassins test (le Veyre et les sources de la Rance) et sur les autres sous bassins permet déjà d’apporter quelques informations tendancielles sur le nombre, la nature et l’état des zones humides du territoire.

Densité :
Plus de 1130 zones humides de plus de 50 ares ont été inventoriées ; elles sont signalées sur la carte 15. Elles couvrent un territoire de plus de 910 hectares au total, soit moins de 0.8 % du bassin hydrographique.

Localisation :

Les sous bassins les moins riches sont ceux qui englobent la rivière Célé, « la palme » revenant au sous – bassin Célé 1 (Causse), avec moins de 0.06 % de zones humides, ce qui s’explique en grande partie par la nature du sous sol, peu propice au développement des zones humides.

Types de zones humides recensées :
Les grands types de milieux humides recensés sont les suivants : pelouses acidophiles, prairies mésophiles, prairies humides à joncs, jonçaises, mégaphorbiales, cariçaies, bois humides acidophiles,
tourbières (rares), magnocariçaies, végétation d'eau courante, d'eau stagnante et de sources.
Parmi les espèces contactées, certaines sont protégées : Dactylorhiza maculata, Parnassia palustris,
Gymnadenia canopsea, Orchis mascula, Orchis morio, Menyanthes trifoliata, Gentiana
pneumonanthe, Erica tetralix, Arnica montana, Hydrocotyle vulgaris, Ranunculus omiophyllus,
Hypéricum elodes, Eleocharis multiflora, ... Les plus connues sont la Droséra à feuilles rondes
(Drosera rotundifolia), la Droséra à feuilles longues (Drosera longifolia) et la Droséra Intermédia
Hayne, plantes de tourbières rares et protégées. Cette liste ne représente bien entendu qu’un faible
échantillon des espèces végétales recensées sur le territoire.

La plupart de ces zones résultent de l’assemblage complexe de différents habitats leur conférant une
biodiversité végétale et animale intéressante.

Caractéristiques géographiques :
A l’échelle du bassin hydrographique, les zones humides semblent être réparties de la façon
suivante :
- Les milieux riches à fort intérêt patrimonial sont principalement cantonnés aux têtes de bassin du
 Bervezou, du Veyre, de l’Anès et du Moulègre. Des habitats exceptionnels y ont été recensés :
 Cariçaies à Carex rostrata, à Carex vesicaria et à Carex paniculata notamment. On y trouve
 également des espèces emblématiques telles que la Drosera longifolia L., la Drosera intermedia
 Hayne, la Drosera rotundifolia L. Ces zones présentent aussi un intérêt hydrologique certain.
- Les zones humides à fort potentiel mais en forte régression sont majoritairement situées sur les
 sous – bassins du Drauzou, de la Ressègue, des Sources de la Rance, du Célé, de l’Aujou et de
 l’Enguirande. Leur intérêt patrimonial demeure fort même s’il est plus commun. Leur intérêt
 hydrologique est important. La pression agricole et urbaine sur ces secteurs semble expliquer la
 disparition importante de zones humides.
- Enfin, les zones humides alluviales (en bord de cours d’eau) sont surtout localisées dans les
 gorges des affluents du Célé et le long du Célé et de la Rance. Leur rôle patrimonial est moyen
 (peu d’espèces protégées) mais leur rôle hydrologique est primordial (régulation des régimes des
 eaux).

4.2.3.4 Plan d’actions
Les contacts établis avec les exploitants agricoles du Cantal et du Lot ont révélé un intérêt plus ou
moins important pour la préservation de ces zones humides : certains exploitants ont re-découvert tout
l’intérêt de conserver ces habitats naturels suite à la sécheresse de 2003. Mais la pression de
drainage demeure très forte et de nombreuses zones sont vouées à disparaître à plus ou moins court
terme par une reconversion en prairies temporaires ou cultures céréalières.
Selon le RGA 2000 la superficie drainée par drains enterrés sur le bassin versant du Célé serait de
2 196 ha, dont 1 665 dans le Cantal, mais ce chiffre est largement sous évalué (une déclaration n’est
obligatoire qu’au dessus de 1000 m²). Pour plus d’information sur les pratiques de drainage, voir partie
4.4 du chapitre 3.

Dès 2007, un programme d’actions test comprenant l’élaboration de plans de gestion d’une vingtaine
de zones humides (sensibilisation des agriculteurs, mise en place de mesures de gestion, de
protection ou de conservation), devrait être testé sur la partie Cantalienne du bassin du Célé, sous co-
maîtrise d’ouvrage du CPIE de Haute Auvergne et du syndicat mixte du bassin de la Rance et du
Célé.

4.2.4 Plans d’eau et retenues

- Impacts des plans d’eau :

On distingue généralement trois grands types de plans d’eau :
- Les plans d’eau fermés (mares, étangs, ...) dont la connexion avec le réseau hydrographique
superficiel ne s’effectue qu’éventuellement, en période de hautes eaux. Leur alimentation en eau
s’effectue par le biais de la nappe alluviale, d’une source ou par les eaux météoriques (infiltration et ruissellement).
- Les retenues au fil de l’eau. Ces retenues sont liées à une activité humaine passée ou encore existante : microcentrale hydroélectrique, irrigation des terres, tourisme (baignade), protection d’ouvrages (pile de ponts par exemple)...
- Les plans d’eau qui sont remplis par dérivation ou pompage depuis le réseau superficial et utilisées en période d’été (irrigation, abreuvement…).

L’impact de ces plans d’eau est relativement ambigu. Dans certaines conditions, ils peuvent avoir un impact positif lors des crues de faible amplitude, contenant un peu la masse d’eau supplémentaire arrivant (en tête de bassin notamment) et à l’été en maintenant un niveau d’eau minimum sur certains tronçons et en rehaussant la nappe alluviale. À l’inverse, ils peuvent avoir un impact négatif en retenant trop d’eau à l’été et en rejetant des eaux réchauffées ou dont la composition physico-chimique a changé.

L’article R 214 – 1 du code de l’environnement stipule que la création de tout plan d’eau d’une superficie supérieure à 0,1 ha doit faire l’objet d’une déclaration auprès des services de l’état. Les plans d’eau supérieurs à 3 ha doivent faire l’objet d’une demande d’autorisation. Cependant selon l’avis même des services de l’Etat c’est encore loin d’être le cas. Les chiffres fournis ci-dessous sont donc probablement sous-évalués.

- **Les plans d’eau du bassin du Céle** :

 Un nombre important de plans d’eau privés ou d’anciennes retenues de moulins (228 sont à ce jour recensées) est présent sur le bassin du Céle. Ces ouvrages sont majoritairement situés en tête de bassin et sur les petits cheveux du bassin hydrographique.

 Certains de ces plans d’eau ont une valeur patrimoniale forte. On citera par exemple :
 - Certaines “grouilles” et chenaux tourbeux du haut bassin du Bervezou qui accueillent ponctuellement une végétation amphibie oligotrophe à Millepertuis des marais et Potamot à feuilles de renouée (habitat d’intérêt communautaire).
 - Les herbiers flottants à nénuphar jaune qui ont colonisé certaines zones de calme à l’amont de chaussées sur le Céle et sur le haut bassin du Drauzou.
 - Les étangs de Puyblanc et la vallée de la Sagne qui abritent une parvo-roselière neutrobasique caractérisée par le Plantin lancéolé et le Pied de loup.

 Ces habitats naturels abritent une faune remarquable avec, en particulier :
 - Des libellules : Agrion délicat (sur les mares et grouilles acides du Ségala), Agrion mignon (espèce rare présente à Puyblanc) et Aeshne isocèle sur les eaux calmes du Céle (espèce très rare dans le Lot).
 - Des batraciens : des recherches spécifiques s’imposent concernant le très rare Crapaud sonneur à ventre jaune qui pourrait encore être présent sur quelques micro-points d’eau du Ségala et de la Châtaigneraie. Sa présence sur les étangs de Puyblanc a été confirmée en 1998.
 - Des oiseaux : pas d’espèces réellement infodées à ces habitats, mais rôle important de ces eaux calmes pour la Poule d’eau et le Héron cendré.

 Certains plans d’eau sont classés pour leur population piscicole : plans d’eau de 1ère catégorie piscicole, essentiellement situés dans le Ségala et la Châtaigneraie (Cf. carte 32 sur les loisirs aquatiques). Cependant, ce sont surtout des espèces intruduites qui peuplent ces plans d’eau, tandis que les espèces infodées aux cours d’eau de 1ère catégorie ont pour la plupart disparu.

 Les plans d’eau utilisés pour la baignade et les loisirs aquatiques (Cassaniouze, Calvinet...) ainsi que ceux construits pour l’usage agricole présentent très souvent une faible valeur patrimoniale. Ces derniers sont pourtant nombreux. Suite aux étés secs de 2003 et 2005, la multiplication des retenues
collinaires a été signalée par les membres des groupes de travail du SAGE. Cette augmentation n'est pas perceptible dans les chiffres communiqués par les services de l'État :

- Cantal : seulement 2 créations déclarées en 5 ans (2000 à 2004) dans le Cantal pour un total d'au moins 120 plans d'eau ;
- Lot : les étangs représentent une surface de 33 hectares. 3 plans d'eau de plus de 1000 m² (soumis à déclaration) ont été réalisés entre 2000 et 2006. La création de 11 autres plans d'eau a été signalée à la DDEA. 5 des plans d'eau créés ont une vocaiton d'irrigation.

4.2.5 Zones Boisées

Les massifs forestiers contribuent généralement à la préservation, voire à l'amélioration de la qualité des eaux superficielles et souterraines. En effet, la strate arborée favorise l'infiltration de l'eau dans le sol et limite ainsi l'érosion et le lessivage des sols. Ainsi, le défrichement d'une zone forestière peut avoir pour conséquence directe un apport de matières en suspension dans les cours d'eau. Les zones boisées ont aussi un rôle épurateur des eaux de ruissellement et de nappe. Enfin elles participent à l'atténuation des ondes de crue.

De plus, les forêts sont le refuge de nombreuses espèces animales, et comportent parfois une flore rare. Des pratiques de gestion forestière trop homogénéisantes (élimination d'arbres morts, de clairières, de mares...) peuvent réduire fortement la biodiversité et des aménagements inconsiderés peuvent mettre à mal des milieux rares. Les modes de gestion forestière pratiqués sur le bassin du Célé sont détaillés dans la partie 4.7 du chapitre 3.

Les zones boisées du Ségala et de la Châtaigneraie se situent essentiellement à flancs de collines ou dans les gorges des cours d'eau. Les boisements les plus riches (mélange de futaies de feuillus et taillis) se retrouvent sur les têtes de bassin (Moulègre, Anès, Rance).

La Haute Châtaigneraie (têtes de bassins) est le domaine de la chênaie-hêtraie sans qu'il soit possible de définir les aires naturelles de ces deux essences. L'influence de l'homme a certainement favorisé le chêne au détriment du hêtre.

On note simplement que le hêtre est plus abondant sur les parties hautes et aux expositions fraîches. La chênaie est de type acidiphile avec en sous-bois le houx, la bourdaine, l'aubépine, le merisier, le noisetier, les ronces. Dans la strate herbacée on trouve Teucrium scorodonia, Betonica officinalis, Deschampsia flexuosa, Lonicera periclymenum et des espèces de la lande (callune, fougue, genêt à balais). La hêtraie a une flore très comparable. Il s'y ajoute souvent le sorbier des oiseleurs et le framboisier. Au hêtre et au chêne se mêlent le châtaignier et les bouleaux.

Le châtaignier se développe sur la basse Châtaigneraie où le hêtre est pratiquement absent. La flore est la même que dans la Haute Châtaigneraie.

Sur les Causses les bois de chênes pubescents représentent plus de la moitié des surfaces forestières. La clarté et la structure souvent ouverte de la chênaie pubescente (pré-bois) favorisent le développement d'une strate herbacée dense souvent dominée par le brachypode penne. De nombreuses espèces de lisière y sont fréquentes, telles le géranium sanguin, la mélisse à feuilles de mâle, le Dompte-venin et diverses orchidées. L'exploitation sylvo-pastorale à fréquemment transformé la chênaie pubescente en lande semi-boisée ou s'expriment fortement divers ligneux : Buis, Chèvrefeuille, Bois de Sainte Lucie, Chèvrefeuille d'Etrurie, Erable de Montpellier, Cornouiller mâle.

4.2.6 Paysages de la vallée du Célé

Les richesses patrimoniales (naturelles et architecturales) de la vallée du Célé et son environnement de qualité en font une des plus belles vallées de France. Cependant, malgré les outils de protection décrits dans la partie 4.2.1, la vallée du Célé a souffert de nombreux aménagements publics et privés (implantations de bâtiments à caractère industriels ou agricoles en bordure de rivière, développement anarchique de la signalisation touristique notamment, ...) réalisés jusque dans les années 90 et encore à ce jour.
Dans le souci de préserver la richesse de cette vallée, les élus locaux se sont mobilisés pour faire prendre conscience de la nécessité d’une intervention pour une mise en valeur du patrimoine paysager et naturel. Le Comité National d’Agrément des Contrat de rivière ou de baies a demandé en 2000 au Comité de rivière Célé de réaliser une étude sur l’amélioration de la qualité paysagère. Plusieurs programmes d’amélioration paysagère avaient auparavant été réalisés ou étaient en cours : travaux d’amélioration des cœurs de villages, programmes d’effacement des réseaux électriques et téléphoniques, amélioration des entrées de villes… Mais ces opérations n’ont que rarement concerné des espaces extérieurs aux centres bourgs (bordures de rivières, entités paysagères).

- **Étude sur l’amélioration de la qualité paysagère de la vallée du Célé** :

Cette étude, menée entre 2002 et 2004 par l’Association pour l’Aménagement de la Vallée du Lot a consisté à inventorier l’ensemble des points noirs paysagers, situés dans la Vallée du Célé (Bagnac – Bouzies) : panneaux publicitaires, enseignes et pré-enseignes ; réseaux aériens électriques et téléphoniques ; containers à ordures ménagères ; délaissés et dépôts ; bâtiments agricoles, industriels et commerciaux. L’étude a également été l’occasion de faire un point sur le développement des peupleraies qui sont à l’origine de la fermeture du paysage en basse vallée où le lit majeur se resserrer.

Un point noir paysager est un élément qui ressort du paysage, qui ne semble pas être à sa place et qui tend à « enlaidir » la vision que l’on peut avoir du milieu naturel. C’est une notion très subjective, un point noir paysager pouvant être perçu différemment d’une personne à l’autre. Il peut également évoluer dans le temps.

Il s’en est suivi une étape d’analyse de l’atteinte au paysage portée par ces différents points noirs afin de définir, selon le milieu environnant et les caractéristiques propres de ces éléments (nature et état des matériaux, densité, …), des priorités d’intervention et un programme d’actions crédible techniquement comme financièrement.

Le tableau ci-dessous regroupe l’ensemble des points noirs paysagers inventoriés sur le bassin versant du Célé.

<table>
<thead>
<tr>
<th>TYPE DE POINTS NOIRS</th>
<th>NIVEAU DE PRIORITE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fort</td>
<td>Moyen</td>
</tr>
<tr>
<td>Panneaux (effectif)</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>Réseaux aériens (en nombre de ligne)</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Téléphonique</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>Electrique</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Réseaux aériens (en nombre de ligne)</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Containers à ordures (en nombre de site)</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Dépôts ou Délaissés (en nombre de site)</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Bâtiments (en nombre de site)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL de points noirs</td>
<td>47</td>
<td>124</td>
</tr>
</tbody>
</table>

Tableau 32 : Evaluation du nombre de points noirs paysagers dans la vallée du Célé entre Bagnac et Bouzies

Sources : Association pour l’Aménagement de la Vallée du Lot, 2004

L’étude a permis de constater que la réglementation en vigueur en vallée du Célé n’était pas
suffisamment respectée. La plupart des panneaux installés s’avèrent non conformes à la réglementation. De nombreux ouvrages et travaux ont été implantés, sans avis ni recommandations des organismes compétents (DDE, ABF, CAUE, ...).

L’étude conclut à la nécessité de réaliser un travail important de suppression des points noirs paysagers, en proposant des solutions annexes d’aménagement (charte de signalisation, enfouissement de réseaux...) qui permettraient de palier ces atteintes au paysage. La communauté de communes Lot Célé a déjà entrepris des travaux (charte sur la signalétique, habillage des containers à ordures ménagères...).

Milieux naturels : à retenir !

A l’exception des ZNIEFFs et des sites retenus au titre de Natura 2000, les habitats du bassin hydrographique du Célé sont intéressants sans être véritablement exceptionnels. La taille, la diversité et la richesse intrinsèque à ces milieux n’ont pas incité les services de l’État et les naturalistes à les intégrer dans les démarches d’inventaire tel que celui lancé sur les zones humides à l’échelle nationale.

Les connaissances sur l’existence de milieux intéressants voire remarquables nous viennent donc de l’application de programmes territorialisés (Natura 2000), départementaux (ENS) ou locaux (études d’inventaire des zones humides menées sur le bassin du Célé par exemple).

Le résultat de ces inventaires montre l’intérêt de ces milieux à l’échelle locale (soutien des étages, richesse parfois insoupçonnée de milieux ...) et témoigne d’une destruction importante d’habitats par le passé (notamment d’habitats liés aux zones humides).

Le degré de connaissance de certaines zones (Ségala, Châtaigneraie) reste à ce jour insuffisant et plusieurs zones remarquables sont encore orphelines de mesures de protection. Des actions sont à prévoir pour définir des plans de gestion ou de conservation.

Au niveau paysager, d’importants efforts de préservation sont également à entreprendre, notamment là où les infrastructures routières longent les vallées.

4.3 Espèces animales

4.3.1 Espèces remarquables

4.3.1.1 Données générales

Le tableau suivant liste les espèces remarquables dont la présence a été attestée sur le bassin du Célé, soit qu’elles aient été étudiées ou fait l’objet de programmes d’inventaire ou de suivis (actualisation des ZNIEFFs...), soit qu’elles aient été recensées lors de prospections ponctuelles (pêche électrique de sauvegarde, ...).
Tableau 33 : Les principales espèces remarquables présentes sur le bassin du Célé

Sources : Parc naturel régional des Causses du Quercy, AAVL, CSP

Remarque : ce tableau n’est pas exhaustif et recense seulement les espèces animales emblématiques du bassin du Célé.
4.3.1.2 Résultats de l’étude sur les espèces aquatiques patrimoniales (Écrevisse à pieds blancs, Moule perlière et Chabot)

La connaissance très insuffisante de l’état des populations et des caractéristiques des espèces aquatiques patrimoniales du bassin du Célé a incité l’Association pour l’Aménagement de la Vallée du Lot à réaliser, dans le cadre du Contrat de rivière Célé, un programme de recherche sur l’Écrevisse à pieds blanc, la Moule perlière et le Chabot.

- Contenu de l’étude

Le Laboratoire d’Ecologie des Hydrosystèmes (anciennement Centre d’Ecologie des Systèmes Aquatiques Continentaux) de l’Université Paul Sabatier de Toulouse a mené ce programme de recherche dont les applications devaient servir à établir ou à préciser les modalités d’intervention, de protection, et de valorisation des habitats préférentiels des espèces aquatiques protégées, hébergées par les cours d’eau du réseau hydrographique du Célé.

Parmi les espèces aquatiques menacées et/ou indicatrices de bonne qualité des milieux, trois espèces présentes dans le réseau hydrographique du Célé ont été choisies :
- la Moule perlière (Margaritifera margaritifera L., Mollusque) qui est ici en limite de répartition et qui était présente sur une grande majorité d’affluents il y a quelques années encore (Sources : G. Cochet) ;
- l’Écrevisse à pieds blancs (Austropotamobius pallipes Lereboullet, Crustacé) qui doit « partager » son territoire avec les écrevisses américaines ;
- Le Chabot (Cottus gobio L., poisson Cottidae), bio-indicateur de la qualité des eaux.

Objectifs de la recherche :
- Décrire la structure des populations en place (densités, biomasses, taille des individus) ;
- Décrire finement les caractéristiques abiotiques (habitat, physico-chimie) et biotiques (espèces associées) des sites d’accueil ;
- Proposer une typologie des habitats potentiels de ces espèces dans le bassin du Célé ;
- Mettre en place une méthode de description des habitats, à l’usage des techniciens de terrain ;
- Etablir des priorités pour la protection et la gestion des habitats selon leur potentialité d’accueil et leur niveau de dégradation ;
- Fixer des objectifs de restauration tout en proposant des modalités d’intervention ;
- Sensibiliser les acteurs sociaux et les populations locales.

- Résultats de l’étude

Trente cinq stations, ruisseaux, ou tronçons de rivière ont été prospectés sur le réseau
hydrographique en amont de Figeac. Les sites ont été prospectés au moyen de pêches électriques pour le chabot et l’écrevisse et de prospections visuelles et manuelles pour la moule.

Seuls dix de ces sites hébergent une des trois espèces remarquables (4 pour le Chabot, 4 pour l’Ecrevisse à pieds blancs, 2 pour la Moule perlière), avec des densités en général modérées à faibles (voir carte 14).

<table>
<thead>
<tr>
<th>Station</th>
<th>Espèce remarquable</th>
<th>Densité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Bervezou, station de pompage de Prendeignes</td>
<td>Chabot</td>
<td>Densité faible</td>
</tr>
<tr>
<td>Le Bervezou, à l’aval du moulin de Puy Launay</td>
<td>Chabot</td>
<td>Densité modérée (97 ind/ha)</td>
</tr>
<tr>
<td>La Burlande, de l’aval du Sibergues à la confluence avec le Bervezou</td>
<td>Chabot</td>
<td>Densité faible (45 ind/ha)</td>
</tr>
<tr>
<td>Le Saint-Perdoux, de 100 m à l’amont du pont avec D61 à 400m avant confluence avec Célé</td>
<td>Chabot</td>
<td>Densité modérée (362 ind/ha)</td>
</tr>
<tr>
<td>Ruisseau de La Capié, pont de la D28</td>
<td>Ecrevisse à pieds blancs</td>
<td>Population dense (2.32 ind/m²), 1/3 de juvéniles</td>
</tr>
<tr>
<td>Ruisseau de Sartre, intersection de la N122</td>
<td>Ecrevisse à pieds blancs</td>
<td>Population dense (2.45 ind/m²), 1/3 de juvéniles</td>
</tr>
<tr>
<td>Ruisseau de Lafage, 250 m en amont de la confluence avec le Veyre</td>
<td>Ecrevisse à pieds blancs</td>
<td>Densité faible</td>
</tr>
<tr>
<td>Le Sibergues</td>
<td>Ecrevisse à pieds blancs</td>
<td>Population très dense</td>
</tr>
<tr>
<td>Le Célé, amont confluence Ruisseau de Salenques, Mourjou</td>
<td>Moule perlière</td>
<td>Densité modérée (390 individus), reproduction avérée, juvéniles < 5%</td>
</tr>
<tr>
<td>Le Veyre</td>
<td>Moule perlière</td>
<td>Densité faible, absence de juvéniles, reproduction non avérée, population probablement en déclin</td>
</tr>
</tbody>
</table>

Tableau 34 : Compte rendu des prospections : sites hébergeant des espèces remarquables

Sources : LEH

- **Etat des populations :**

Sur les sites étudiés les conclusions suivantes peuvent être apportées :

- **Le Chabot** a un spectre écologique relativement étroit mais ses exigences sont compatibles avec la morphologie des rivières du réseau hydrographique du Célé. Il possède des populations suffisamment importantes pour tenter des actions de translocations d’individus vers des petits affluents du Célé. Il pourrait être potentiellement présent sur plusieurs cours d’eau du bassin, sur le Ségala notamment.

- **La Moule perlière** n’est présente que sur un nombre restreint de stations (Célé amont, Veyre), et ses populations sont constituées de groupes d’individus disposés en « tâches » éparse sur des tronçons limités de cours d’eau. De nombreux cours d’eau du bassin ont été prospectés sans trouver trace de l’espèce. Compte tenu de son spectre écologique étroit (notamment vis-à-vis de la qualité chimique de l’eau) et de sa biologie (dépendance vis-à-vis de la truite), du faible nombre d’individus à l’échelle du réseau hydrographique, de l’inscription de la Moule perlière sur les listes d’espèces menacées (liste rouge IUCN, Directive Européenne Habitat, mollusques menacés de France), des mesures conservatoires actives sont à prévoir. Les mesures les plus efficaces pour une réhabilitation / protection dans le contexte “Célé” sont sans doute des mesures conservatoires ciblées sur les populations existantes (protection des sites, renforcement des populations de poissons hôtes).

Il semblerait toutefois que des populations restent à découvrir (résultat de prospections récentes réalisées par le technicien de rivière de la communauté de communes du Pays de Mauurs).

- **L’Ecrevisse à pieds blancs** peut présenter des populations très denses mais avec de fortes fluctuations d’une année sur l’autre. Les habitats préférentiels sont de petits ruisseaux (faible largeur, peu profonds) donc sensibles aux usages riverains (activité agricole, piétinement, rejets domestiques...). La présence d’espèces envahissantes (Ecrevisse de Californie essentiellement) laisse planer un doute sur la survie de certaines populations.
Mesures préconisées

- Entretien du lit et des berges :
 D’une façon générale, ces trois espèces sont typiques des milieux courants peu profonds. Elles montrent toutes des préférences pour les substrats hétérogènes. Le maintien de l’écoulement (vitesse moyenne du courant ≥ 20 cm/s – moyenne à la station), en plus du maintien d’un cycle hydrologique (rôle des crues), devrait donc être un souci de gestion des rivières dans le réseau du Célé, en veillant notamment au retrait de certains embâcles (chutes d’arbres) modifiant fortement les écoulements, même dans les secteurs difficilement accessibles (ex. secteurs à Moules perlères).

- Régulation des activités humaines :
 - La présence de bétail à proximité des cours d’eau entraîne un risque de piétinement du lit et des berges. Outre la destruction potentielle d’habitats préférentiels (sous berges pour les écrevisses adultes, zones favorables aux Moules perlères), le piétinement accroit les apports de sédiments et de matière organique aux cours d’eau. La protection des populations implique donc à l’avenir un renforcement de la pratique de clôture des paturages, avec possibilité de mettre en place des systèmes d’abreuvement aménagés.
 - Les actions de curage des cours d’eau provoquent la destruction d’habitats benthiques au niveau même de la zone curée, et une mise en suspension des sédiments en aval. Réglementation, information et police de l’eau auront sans doute un rôle majeur à jouer pour contenir les risques liés à ces curages.
 - En terme de sources de pollution, les rejets domestiques et agricoles directs semblent malheureusement courants, qu’il s’agisse de dysfonctionnements des systèmes d’assainissement collectifs ou autonomes, de lessivages de sols ou de fuites des systèmes de stockages d’effluents agricoles. L’emploi de pesticides en bordure de cours d’eau est aussi une source de destruction des populations, celles-ci étant très sensibles aux teneurs en pesticides.

- Prospections :
 L’inventaire des habitats à espèces remarquables (cartographie) sur le réseau hydrographique du Célé est à ce jour incomplet. Des prospections permettraient de mieux connaître l’état réel des populations.

- Plan d’actions :
 La mise en place de programmes de gestion, protection et/ou conservation des habitats remarquables est indispensable et urgent si l’on souhaite conserver certaines espèces sur le bassin du Célé. Une réflexion sur la mise en œuvre d’un plan d’actions (protection et gestion des habitats à Moule perlée et mise en place de programme de gestion de zones humides) est en cours, portée par le CPIE de Haute Auvergne et le syndicat mixte du bassin de la Rance et du Célé. Il comprendra de fait des actions importantes de communication et de sensibilisation à destination des décideurs (élus) et des propriétaires et gestionnaires de sites.

4.3.1.3 Résultats du suivi « Loutre »

Sources :
 Suivi de la Loutre d’Europe Lutra Lutra en Midi-Pyrénées - Office National de la Chasse et de la Faune Sauvage, 2005
 Suivi Loutre sur le département du lot, bassin hydrographique du Célé - Office National de la Chasse et de la Faune Sauvage, 2003

La dernière enquête d’envergure régionale avait été menée en 1992-1993 et envisageait l’hypothèse d’une recolonisation de Midi-Pyrénées à partir du Massif Central et de l’Espagne. Pour réactualiser les connaissances mais aussi répondre à la directive habitats (la Loutre peut justifier la désignation d’un site Natura 2000), l’Office National de la Chasse et de la Faune Sauvage (ONCFS) a lancé une étude

<table>
<thead>
<tr>
<th>Cours d’eau</th>
<th>Localisation</th>
<th>Indice</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enguirande</td>
<td>-</td>
<td>aucun</td>
<td>-</td>
</tr>
<tr>
<td>Célé</td>
<td>Boussac - Figeac</td>
<td>aucun</td>
<td>-</td>
</tr>
<tr>
<td>Drauzou</td>
<td>-</td>
<td>aucun</td>
<td>-</td>
</tr>
<tr>
<td>Saint Perdoux</td>
<td>Viazac</td>
<td>épreintes</td>
<td>3</td>
</tr>
<tr>
<td>Burlandé</td>
<td>Prendegnies</td>
<td>épreinte</td>
<td>1</td>
</tr>
<tr>
<td>Bervezou</td>
<td>Linac, Prendegnies, Montet et Bouxal, Gorses, Latronquiére</td>
<td>épreintes</td>
<td>12</td>
</tr>
<tr>
<td>Célé</td>
<td>Cabrerets - Marcilhac</td>
<td>aucun</td>
<td>-</td>
</tr>
<tr>
<td>Célé</td>
<td>Figeac - Bagnac / Célé</td>
<td>épreintes</td>
<td>8</td>
</tr>
<tr>
<td>Sagne et Sagne-Célé</td>
<td>-</td>
<td>aucun</td>
<td>-</td>
</tr>
<tr>
<td>Sibergues</td>
<td>Prendegnies</td>
<td>épreintes</td>
<td>3</td>
</tr>
<tr>
<td>Veyre</td>
<td>Bagnac / Célé</td>
<td>épreinte</td>
<td>1</td>
</tr>
</tbody>
</table>

Tableau 35 : Résultats des prospections "Loutre" de novembre 2003

Ces résultats, associés à ceux des prospections de janvier et d’avril 2002, viennent confirmer un cantonnement de la Loutre d’Europe sur le secteur nord-est du département du Lot. La présence de la Loutre d’Europe sur ce secteur amont du bassin hydrographique du Célé, peut s’expliquer par le fait que le secteur lui offre à la fois :
- Nourriture : rivières poissonneuses (salmonidés + cyprinidés)
- Tranquillité : Zone très boisée et très encaissée
- Libre circulation : Réseau routier peu important, densité humaine assez faible.

Les rédacteurs de l’étude ont préconisé une recherche complémentaire sur la relation entre les peuplements piscicoles et la répartition de la Loutre, ainsi qu’une analyse génétique de plusieurs individus pour établir les origines géographiques de la colonisation et prédire la pérennité de cette colonisation.

La mesure prioritaire pour la sauvegarde de l’espèce est la conservation des zones humides et des ripisylves, habitats de gîte et de reproduction de la Loutre.

4.3.1.4 Résultat des recherches liées à la mise en œuvre du DOCOB Natura 2000

Plusieurs espèces inféodées aux milieux aquatiques ont été recherchées : Cordulie splendide, Cordulie à corps fin, Gomphe de graslin, Chabot, Lamproie de planer, Toxostome, Loutre d’europe.

Cette recherche a permis de confirmer la présence d’individus sur cette zone mais n’a pas permis de préciser l’état de conservation de la plupart des populations sus-citées (exception faite du chabot et de la Lamproie de planer dont l’état de conservation a été jugé moyen).

Des colonies de Chauves-souris (Rinolophe euryale notamment) ont aussi été découvertes sur le site. Bien que non directement inféodées aux milieux aquatiques, certaines espèces sont influencées par l’état de la ripisylve.

4.3.1.5 Données ponctuelles complémentaires

Dans le cadre de leurs missions, de nombreux organismes et collectivités ont été amenés à noter la présence d’espèces remarquables sur les cours d’eau du bassin hydrographique du Célé. C’est notamment le cas :

- des CSP Auvergne et Midi-Pyrénées ;
- des Fédérations et Associations Agréées pour la Pêche et la Protection des Milieux Aquatiques du Cantal et du Lot ;
- de l’Office National de la Chasse et de la Faune Sauvage du Lot ;
- des Communautés de communes et du Parc naturel régional des Causses du Quercy (par le biais de leur technicien de rivières ou de naturalistes) ;
- du CPIE de Haute Auvergne ;
- des associations Lot nature et Alter éco ;

Ces données sont généralement ponctuelles, c’est-à-dire qu’elles ne sont pas l’objet d’un inventaire général sur un cours d’eau et qu’elles ne sont pas intégrées dans une démarche de suivi à moyen ou long terme (ex : pêches électriques régulières, suivi d’espèces remarquables…). Il s’agit en fait de « contacts » à l’instant t : l’espèce était présente en ce point donné à cette date précise. Elle y était peut-être pour la première fois et elle n’y est peut-être plus à ce jour. Ceci ne permet donc pas d’avoir de connaissances précises sur l’état des populations et sur leur devenir. Mais cette information est toutefois intéressante en matière d’habitats potentiels : si l’espèce a été présente sur cette rivière (ou tronçon de cours d’eau) c’est qu’elle détenait au moins à cette époque, les conditions abiotiques et biotiques favorables à la présence de cette espèce.

Seul l’inventaire des points de présence de la Loutre, réalisé par l’Office National de la Chasse et de la Faune Sauvage en Midi-Pyrénées peut être considéré différemment puisqu’il est en cours depuis déjà 3 ans et est actualisé chaque année.

Les espèces contactées, hors ZNIEFFs et études précédemment citées, sont les suivantes :

- Ecrevisse à pieds blancs : rencontrées sur le Moulègre, La Ressègue, Le Leynhaguet et les ruisseaux de Sartre, Quézac, Estrades, Couynes et Mouminoux.
- Crapaud sonneur à ventre jaune : 6 individus recensés aux tuileries de puy blanc.
- Chabot : individus recensés lors de pêches électriques sur le Célé, la Rance, la Ressègue, l’Anès et le Veyre.
- Lamproie de planer : individus contactés lors de pêches électriques sur le Célé, la Rance, la Ressègue, le Veyre, l’Anès et le Ruisseau de Canhac (Marcolès).

Espèces remarquables : à retenir !

La diversité hydrogéologique du bassin du Célé constitue sa principale richesse qui explique que des espèces animales et végétales méridionales côtoient des espèces de milieux « montagnards ». A l’exception des zones protégées (Natura 2000, APB) et de quelques habitats sur le Ségala et la Châtaigneraie, les habitats et les espèces présents sur le bassin du Célé présentent un intérêt local ou régional. Cette dimension n’a pas suffit à impulser des programmes de recherches et de suivis avant le lancement des documents d’objectifs Natura 2000, du suivi Loutres et de l’étude sur la protection et la gestion des espèces aquatiques patrimoniales.

Ces programmes de suivis et de recherches ont mis en avant une situation alarmante pour certaines populations (Moules perlières = populations relictuelles) ; préoccupante pour d’autres (Ecrevisses à pieds blancs, Chabot) mais par contre en nette amélioration pour les dernières (Loutre).

En basse vallée du Célé, ce ne sont pas les richesses halieutiques ou les écosystèmes aquatiques remarquables qui font la richesse naturelle de la vallée mais les paysages, les habitats et les milieux contigus de la rivière.

Les cours d’eau de la partie amont du Célé et ses affluents, ont été moins « anthropisés ». Zones de refuge, ils abritent des populations et espèces rares qui peuvent constituer aussi des poul’s d’où peut redevenir la colonisation des milieux actuellement dégradés. Ces habitats sont donc moins dégradés qu’en basse vallée du Célé. Les espèces qui y sont inféodées (Ecrevisses à pieds blancs, Moules perlières…) sont toutefois fragiles, parfois relictuelles, et ne tolèrent aucune modification (curages, drainages, absence d’entretien de berges, pollution de l’eau…).

Le manque de connaissances sur l’existence et l’état réel de certaines populations, ainsi que l’absence de suivi actuel s’avèrent très problématique et handicapants pour construire des programmes de protection et de conservation des espèces et habitats remarquables. Cette lacune est particulièrement prégnante sur la partie amont du bassin, qui est pourtant la plus riche en espèces aquatiques remarquables.
4.3.2 **Peuplements piscicoles**

Les différents peuplements piscicoles présents sur le bassin du Célé se répartissent comme suit (cf. carte 16) :

- peuplements salmonicoles à l’amont, dans la partie cantalienne,
- peuplements mixtes à dominante salmonicole (truite fario dominante) et cyprinidés d’eaux vives (barbeau fluvial, goujon) de Bagnac-sur-Célé à l’amont de Figeac,
- peuplements mixtes du plan d’eau du Surgié (Figeac) à la confluence avec le Drauzou,
- peuplements mixtes à dominante cyprinicolé (barbeau, goujon, gardon, brochet) à l’aval.

Dans le cadre du Réseau Hydrobiologique et Piscicole (RHP), le suivi de la qualité piscicole est effectué par le Conseil Supérieur de la Pêche (CSP) sur le Célé ainsi que sur deux affluents principaux : la Rance et le Bervezou. Les résultats obtenus montrent que la qualité des peuplements piscicoles est supérieure sur les affluents du Célé (peuplements de première catégorie), ainsi qu’en amont de Figeac sur le Célé.

La Célé a été classé en seconde catégorie à l’aval de Figeac et jusqu’à Cabrerets, les potentialités piscicoles (qualité des eaux et des habitats) y étant moins bonnes.

Dans les pêches électriques effectuées depuis 1995, les espèces rencontrées sont les suivantes :

- **Rance** : Truite fario, Vairon, Lamproie de planer, Goujon et Loche franche ;
- **Bervezou** : Chabot, Truite fario, Lamproie de planer, Vairon, Gardon et Perche soleil ;
- **Célé** : Chabot, Truite fario, Vairon, Loche franche, Toxostome, Vandoise, Chevesne, Goujon, Barbeau fluvial, Gardon, Ablette, Ecrevisse américaine, Ombre commun et anguille.

4.3.2.2 **Mesures de classement**

Les atouts piscicoles et la vocation halieutique du bassin du Célé, reposant en particulier sur la présence de la Truite fario, ont conduit à des mesures de réservation et de classement, afin de préserver et de rétablir la continuité piscicole :

- **Classement en rivière réservée (Art. 2 de la loi du 16/10/19) :** Ce classement au titre de la Loi de 1919, relative à l’énergie hydraulique, vise à geler l’équipement des cours d’eau en y interdisant toute autorisation d’entreprise hydraulique nouvelle.

7 Très bon indicateur biologique de la qualité d’habitat des cours d’eau, le Chabot (Cottus gobio) vit typiquement sous les pierres des fonds rocheux, dans des eaux bien oxygénées. Son régime alimentaire est surtout basé sur des invertébrés réputés polluonsensibles (Ephémères, Plecoptères, Trichoptères).
Bassin du Célé :
- Décret d’application du 28/07/87 pour le Bervezou, la Burlande, le Drauzou, le Ruisseau Noir, la Sagne, le Saint Perdoux, le Sibergues et le Veyre (dans le département du Lot).
- Décret d’application du 25/04/89 pour le Célé, dans le département du Lot.
- Décret d’application du 29/10/96 pour l’Anès, le ruisseau de Calvinet, le Célé (dans le département du Cantal), le Moulègre, la Rance et leurs affluents

Classement riviére à migrateurs (Art. L 432-6 du Code de l’Environnement issu de l’article L232-6 du Code Rural) : Le classement au titre de l’article L432-6 du Code de l’Environnement d’une rivière, ou tronçon de rivière, impose le franchissement de tout ouvrage postérieur au dit classement. De plus, si la parution d’une liste d’espèces migratrices suit ce classement, tous les ouvrages doivent être rendus franchissables pour les espèces concernées, dans les 5 ans suivant cette parution.

Bassin du Célé :
- Décret d’application du 20/06/89 pour : le Célé, le Bervezou, la Burlande, le Drauzou, le Ruisseau Noir, la Sagne, le Saint Perdoux, le Sibergues et le Veyre.
- Arrêté du 21/08/89 : Classement du Veyre et du Célé (dans le département du Lot) pour la Truite fario.

La Truite fario justifie le classement en rivière à migrateur car, bien que n’étant pas un grand migrateur, elle a besoin d’une variété d’habitats pour effectuer l’intégralité de son cycle de reproduction, ce qui la pousse à efectuer de petites migrations.

La liste des espèces migratrices, pour le Veyre et le Célé, étant parue le 21 août 1989, la mise en application de l’article L432-6 aurait dû intervenir avant le 21 août 1994. Malgré l’expiration du délai d’équipement des ouvrages du Célé et du Veyre, 12 seuils ne sont pas franchissables actuellement sur la partie lotoise de ces cours d’eau. Remarque : Le Célé et ses affluents ne sont classés que jusqu’à la limite administrative du Cantal. C’est ainsi que le Veyre n’est classé au titre de migrateurs que sur sa rive droite, la rive lotoise.

En ce qui concerne les cours d’eau classés au titre du L432-6 et qui possèdent comme le Bervezou des obstacles naturels infranchissables (le Gouffre des cloches), le classement n’a pas été remis en question. En effet, il importe d’assurer la libre circulation des poissons dans le sous bassin à l’aval de l’obstacle naturel ainsi que dans le sous bassin amont.

La loi sur l’eau du 30 décembre 2006 prévoit l’abrogation de l’article L 432-6 du code de l’environnement ainsi que de l’article 2 de la loi du 16/10/19. Elle introduit par contre de nouvelles obligations pour les cours d’eau en très bon état écologique ou identifiés par les SDAGE comme jouant le rôle de réservoir biologique ou dans lesquels une protection complète des poissons migrateurs vivant alternativement en eau douce et en eau salée est nécessaire : "Le renouvellement de la concession ou de l’autorisation des ouvrages existants […] est subordonné à des prescriptions permettant de maintenir le très bon état écologique des eaux, de maintenir ou d’atteindre le bon état écologique […] ou d’assurer la protection des poissons migrateurs vivant alternativement en eau douce et en eau salée".
4.3.2.3 Gestion piscicole

La gestion piscicole a pour objet de gérer la demande des pêcheurs en fonction de la réalité écologique des milieux. Les gestionnaires directs sont les Associations Agrées pour le Pêche et la Protection du Milieu Aquatique (AAPPMA) qui mettent en place des plans de gestion locaux. Dans leur mission d'intérêt général les Fédérations Départementales doivent aider à la mise en place et à la coordination de la gestion piscicole sur l'ensemble du territoire ainsi que s'assurer de l'harmonisation de celle-ci avec les différents plans de gestion des départements limitrophes.

Les Plans Départementaux pour la Protection du milieu aquatique et la Gestion des ressources piscicoles (PDPG) sont des outils de gestion des milieux aquatiques qui s'adressent aux gestionnaires locaux (AAPPMA). Ils reposent sur l'analyse des peuplements piscicoles. La base des PDPG est d'établir un diagnostic du milieu en s'appuyant sur les poissons comme indicateurs. A partir de ce diagnostic les PDPG proposent des actions pour rétablir ou améliorer les populations de l'espèce repère. Ces actions sont ensuite validées par les élus de la fédération et des AAPPMA.

Le PDPG est une aide destinée aux détenteurs directs du droit de pêche (AAPPMA ou propriétaires privés) pour la réalisation de leurs plans de gestion. Il constitue aussi un document technique de référence pour le monde de la pêche, qui doit être pris en compte dans le SAGE.

Les unités de gestion piscicole du bassin du Célé sont définies dans les PDPG du Lot et du Cantal, à partir de l'évaluation des domaines (salmonicole, intermédiaire et cyprinicole). Pour chaque unité, un état fonctionnel est évalué : (conforme, perturbé ou dégradé) en fonction du niveau de satisfaction du cycle biologique de l'espèce repère (respectivement Truite fario, Ombre commun et Brochet).

Un mode de gestion est proposé en fonction de l'état fonctionnel :
- gestion patrimoniale (plus aucun déversement de poissons) pour les cours d'eau conformes ;
- gestion patrimoniale différée (déversement de poissons adaptés possibles pour palier les atteintes du milieu et répondre à la demande pêche) pour les cours d'eau perturbés.

A partir de ce diagnostic des actions sont proposées et classées en Modules d’Actions Cohérents (MAC) ou en Recommandations d’Actions Complémentaires (RAC).

La synthèse par unité de gestion est présentée dans le tableau 36, page suivante.

8 Les trois domaines de peuplements piscicoles se définissent comme suit :
- Salmonicole : truite et espèces d’accompagnement (chabot, vairon, loche franche),
- Intermédiaire : peuplement salmonicole et présence de cyprinidés d’eaux vives (chevesne, barbeau, vandoise, goujon, spirlin,...),
- Cyprinicole : carnassiers (brochet, sandre, perche) et cyprinidés (brème, gardon, carpe, tanche...).
<table>
<thead>
<tr>
<th>Contexte</th>
<th>Domaine</th>
<th>Etat fonctionnel gestion</th>
<th>Facteurs limitants</th>
<th>Actions recommandées (RAC/MAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Célé de sa source jusqu'à sa confluence avec l'Aujou</td>
<td>Salmonicole</td>
<td>Perturbé, gestion patrimoniale différée</td>
<td>Drainage, déboisement, cultures céréalières, pompages agricoles, chaussées infranchissables, plan d'eau de Cassaniouze, prise d'eau de St Constant.</td>
<td>RAC: Mise en conformité des rejets des stations dépuration de Maurs et de St Constant, amélioration de la qualité de l'eau du plan d'eau de Cassaniouze, surveillance des pompages en rivière effectués pour l'irrigation. Franchissement des chaussées du Moulin du Clout, de Labouissonnasse, de Vixège, de Maynard et du moulin de Larive sur le Célé, de la prise d'eau de St-Constant sur la Ressègue, du moulin du Fau sur la Rance, création d'une diversification du milieu ou de l'écoulement des eaux sur le Célé et ses affluents, restauration et entretien des berges.</td>
</tr>
<tr>
<td>Rance</td>
<td>Salmonicole</td>
<td>Conforme, gestion patrimoniale</td>
<td>Déboisement, cultures céréalières, barrage du val de Rance, chaussée du Moulin de Fau, plans d'eau du Rouget et de Vic, STEP du Rouget, drainage, chaussées infranchissables sur l'Anes.</td>
<td>RAC: Prendre en compte l'élévation des sols dans les pratiques culturelles, les déboisements et les ouvertures de pistes forestières, les travaux sur les routes et les chemins, limiter les autorisation de drainage et de déboisement, sensibiliser à l'abordabilité des cours d'eau et à la création de bandes enherbées, améliorer le niveau d'épuration des stations du Rouget et de Maurs, permettre le franchissement de la chaussée du Moulin du Fau, de la digue du plan d'eau de Vic et des seuils sur l'Anes, restauration et entretien des berges.</td>
</tr>
<tr>
<td>Veyre</td>
<td>Salmonicole</td>
<td>Conforme, gestion patrimoniale</td>
<td>Micro centrale de Roquetanière, chaussée du Moulin de Lacapelle, plan d'eau de Parlan, drainage (ruisseaux Noir et des Rousties).</td>
<td>MAC: diminuer le colmatage par la mise en place de bandes enherbées, augmenter les zones de reproduction, permettre l'accès aux zones de frayères, restaurer ou aménager les habitats (abris en berge et en pleine eau). RAC: privilégier les prairies naturelles et protéger les zones humides, surveiller la qualité des rejets, mettre en place des suivis de populations piscicoles, surveiller l'évolution des populations d'écrevisses à pieds blancs, étudier le cas du ruisseau de Planioles.</td>
</tr>
<tr>
<td>Célé de sa confluence avec le Veyre jusqu'à sa confluence avec le Lot</td>
<td>Intermédiaire</td>
<td>Perturbé, gestion patrimoniale différée</td>
<td>Rejets agricoles et urbains, anciens travaux en lit mineur, seuils, étages sévères.</td>
<td>MAC: diminuer le colmatage par la mise en place de bandes enherbées, augmenter les zones de reproduction, permettre l'accès aux zones de frayères, restaurer ou aménager les habitats (abris en berge et en pleine eau). RAC: privilégier les prairies naturelles et protéger les zones humides, surveiller la qualité des rejets, mettre en place des suivis de populations piscicoles, surveiller l'évolution des populations d'écrevisses à pieds blancs, étudier le cas du ruisseau de Planioles.</td>
</tr>
<tr>
<td>Bervezou</td>
<td>Salmonicole</td>
<td>Conforme, gestion patrimoniale</td>
<td>Rejets urbains, stations AEP de Gabanelle et Longuecoste, Pisciculture du Colombier, seuils, cascade naturelle (Gouffre des cloches), élevages.</td>
<td>RAC: limiter les autorisations de drainage pour protéger les zones humides, étudier la franchissabilité du moulin du Puy Launay, surveiller les rejets, prévoir une concertation avec les exploitants AEP, suivre les populations piscicoles et d'écrevisses à pieds blancs.</td>
</tr>
<tr>
<td>Drauzou</td>
<td>Salmonicole</td>
<td>Perturbé, gestion patrimoniale différée</td>
<td>Prélèvement AEP, seuils, hydrologie (accentuation de l'étagement), anciens travaux hydrologiques.</td>
<td>MAC: mettre en place des abris sous berges ou en pleine eau pour améliorer la capacité d'accueil sur les zones ou celle-ci n'est pas optimale, améliorer le taux de montaison des géniteurs grâce à des pré-barrages destinés à relever la ligne d'eau ou passer à poissons et améliorer le potentiel de recrutement en augmentant la zone de fraie. RAC: opter pour une gestion des ouvrages hydrauliques concertée entre tous les gestionnaires, mettre en place des suivis de populations (truite fario et écrevisses à pieds blancs), mettre en place un plan d'allevinage.</td>
</tr>
</tbody>
</table>

Tableau 36 : Synthèse de l'état piscicole des cours d'eau et des actions recommandées dans les PDPG

PDPG du Cantal

A ce jour, le PDPG du Cantal a abouti à l'établissement d'un Plan des Actions Nécessaires (PAN), par contre celui du Lot n'est pas encore établi. Les PDPG ont permis de définir un état perturbé pour le Célé. Une gestion patrimoniale différée est recommandée. Les actions prévues dans le PDPG du Cantal ne permettraient pas d'aboutir à une augmentation significative du nombre de poissons. C'est pourquoi, ces actions sont inscrites en tant que RAC, donc moins prioritaires.

9 Terme employé dans le PDPG, le terme défrichement serait plus approprié.
10 Document de synthèse avec l'orientation de gestion choisie pour chaque contexte (patrimoniale ou non), le MAC retenu, son coût et une proposition de financement. C'est la dernière étape du PDPG.
PDPG du Lot:
Sur la partie Lotoise du Célé, quatre MAC ont été définis, ils devraient permettre de restaurer l'habitat. Ces modules sont complétés par des RAC.
Les affluents du Célé, à l'exception du Drauzou, sont dans des états conformes. Une gestion patrimoniale y est recommandée et des RAC, visant à concilier les usages et la préservation des populations en place, y sont préconisées.

Depuis la mise en place du PDPG, certains travaux ont été réalisés : passes à poissons du Moulin du Fau et la prise d'eau de Roquetanière, restauration des berges du Célé, STEP de Maurs, ... et d'autres sont programmés. Certaines des actions préconisées ci-dessus (bandes enherbées, équipement de seuils, protection des zones humides...) peuvent également être mises en place dans le cadre du SAGE.

Peuplements piscicoles : à retenir !

A l'exception de la baie vallée du Célé, les cours d'eau du bassin renferment des peuplements salmonicoles, caractéristiques des eaux froides, courantes et oxygénées des moyennes montagnes.
Une diminution des effectifs des populations piscicoles (Truite fario notamment) est observée sur le Célé et ses affluents depuis 6 ans. Toutefois, faute de moyens humains suffisants, les données du RHP ne peuvent être exploitées et analysées sur le long terme.

Les PDPG du Cantal et du Lot analysent les populations potentielles et réelles des cours d'eau et les perturbations existantes. A partir de ces données, ils définissent des mesures de gestion à appliquer sur l'ensemble des cours d'eau du bassin du Célé. Le PDPG du Cantal a abouti à la l'établissement d'un plan d'actions nécessaires, celui du Lot reste à faire. Le SAGE doit s'assurer de la cohérence de ces mesures et de leur application.

4.3.3 Espèces envahissantes

Les espèces envahissantes sont des espèces généralement allochtones dont la prolifération peut nuire aux espèces autochtones et entraîner une dégradation des milieux aquatiques.

Sur le bassin du Célé, plusieurs espèces envahissantes ont été recensées. Elles ne font pas l'objet d'un suivi régulier ou d'une lutte systématique, les informations fournies dans ce paragraphe sont issues d'observations ponctuelles des techniciens de rivière du territoire et des Fédérations de pêche. Ces observations sont recensées sur la carte 17.

- **Le ragondin (Myocastor Coypus)**

Le ragondin est un rongeur introduit en Europe pour sa fourrure. De part son comportement et son régime alimentaire, il provoque des dégâts physiques aux cours d'eau (érosion des berges dans lesquelles il creuse ses terriers), aux digues des lacs et retenues collinaires et aux cultures agricoles. De plus, il est porteur de certaines maladies, transmissibles à l'homme comme la Leptospirose. Cette espèce est régulièrement classée nuisible et elle peut être régulée à tir hors période de chasse.

Le ragondin est présent sur l'ensemble du bassin versant du Célé et occasionne des dégâts importants sur les berges et les parcelles agricoles. Ce problème est fréquemment soulevé au cours des réunions par les riverains et les agriculteurs. Il est également associé au rat musqué sur certaines zones.

Une campagne de piégeage a été organisée en 1998 par les Associations de Chasse de la basse...
vallée du Célé et la Fédération des chasseurs du Lot en collaboration avec les mairies et les propriétaires riverains.
Aucune autre campagne n’a été menée depuis mais des piègeurs agréés assurent toujours cette mission sur le territoire. Ceux-ci sont surtout concentrés sur la basse vallée alors que les ragondins se sont propagés sur la majorité des cours d’eau du territoire et notamment sur les plans d’eau, les lacs de Saint Namphaise et retenues collinaires des têtes de bassin.

Dans le cadre du plan de gestion des milieux aquatiques en cours de réflexion (voir partie 4.4.4), un programme de piégeage de cette espèce devrait être mis en place.

- **Les écrevisses**

L’Ecrevisse signal et l’Ecrevisse américaine ont été observées sur le bassin versant du Célé. Ces deux espèces exotiques ont été introduites à des fins halieutiques. Elles ont une croissance plus rapide, une taille supérieure (écrevisse signal seulement), et des exigences d’habitats moins strictes que l’écrevisse à pieds blancs. Concernant les maladies comme la peste de l’écrevisse, les espèces exotiques sont porteuses mais résistantes alors que la maladie entraîne la mort de l’Ecrevisse à pieds blancs.

L’Ecrevisse signal (ou de Californie) est en concurrence directe avec l’Ecrevisse à pieds blancs car elle fréquente les mêmes milieux : eaux assez froides et bien oxygénées de la partie amont du bassin versant.

Elle est signalée dans le Cantal, sur le Célé (entre St Constant et Figeac), sur la Rance, sur le Bouzaï, sur la partie aval du Veyre, sur le ruisseau de Leynhaquet, sur la Ressègue et sur la partie amont du Nivolis. Elle est sûrement présente sur de nombreux autres cours d’eau.

L’Ecrevisse américaine fréquente plutôt les eaux plus chaudes de la basse vallée, elle n’est donc pas en concurrence directe avec l’écrevisse à pieds blancs. Elle serait présente sur le Célé de Figeac jusqu’à la confluence. Selon le CSP du Cantal elle serait aussi présente sur certains plans d’eau (Le Rouget) et sur le Moulègre.

- **Le Poisson chat et la Perche soleil**

Ces deux espèces, originaires d’Amérique du Nord, colonisent les eaux calmes des étangs et des rivières. Elles entrent en concurrence avec les espèces de 2ème catégorie piscicole en se nourrissant de leurs alevins et en colonisant leurs habitats.

Ces deux espèces sont présentes sur la basse vallée du Célé. La perche soleil a aussi colonisé certains plans d’eau (étang de l’Enguirande, du Surgié et plan d’eau de Naucaze notamment). Le Plan d’eau de Naucaze a été vidangé à l’automne 2006, ce qui a permis d’éliminer (temporairement ?) la perche soleil.

Épèces envahissantes : à retenir !

Cinq espèces animales peuvent être considérées comme envahissantes sur le bassin du Célé : deux espèces d’écrevisses exotiques, le poisson chat, la perche soleil et le ragondin.

Ces espèces allochtones peuvent entrer en concurrence avec les espèces indigènes et provoquer des perturbations sur l’écosystème aquatique. C’est pourquoi il convient d’engager des actions pour lutter contre leur prolifération. Plusieurs réflexions sont d’ores et déjà engagées :

- Les ragondins devraient faire l’objet d’un programme de piégeage dans le cadre du plan de gestion des milieux aquatiques.
- Des arrêtés préfectoraux en vigueur depuis 2007 prévoient que les écrevisses exotiques puissent être pêchées toute l’année, tandis que la pêche à l’écrevisse à pieds blancs serait totalement interdite sur certains tronçons de cours d’eau.
4.4 État physique des cours d’eau

La qualité des cours d’eau s’appréhende selon plusieurs approches. Outre la qualité physico-chimique et biologique de l’eau, la qualité du milieu physique est l’autre composante essentielle du fonctionnement d’un écosystème aquatique. Elle donne de précieux renseignements sur la capacité d’accueil d’un milieu (habitats) et sur ses capacités d’épuration. En outre, il existe des corrélations importantes entre la dynamique des écoulements et les différents paramètres qui déterminent l’habitat (ripisylve, qualité des berges, morphologie du lit mineur, annexes hydrauliques,…).

4.4.1 État hydromorphologique

La géomorphologie du Célé et de ses affluents varie au gré de la structure géologique traversée.

L’état des lieux de la DCE classe le Célé en amont de sa confluence avec le Veyre, ainsi que tous ses affluents dans la catégorie "cours d’eau encaissés et gorges". Ces cours d’eau cantonnés dans des vallées encaissées sont peu mobiles et ont un lit très sinueux qu’ils ont tendance à creuser.

Le Célé à partir de sa confluence avec le Veyre est défini comme "cours d’eau sinuieux à lit mobile". Cette mobilité naturelle du Célé contribue à créer un "équilibre dynamique". La rivière ajuste continuellement sa géométrie (tracé en plan et profil en long et en travers) aux fluctuations des débits solides et liquides. Dépôts et érosions coexistent parfois sur une même zone, indiquant une tendance naturelle du Célé à former de petits bancs de graviers en milieu du lit mineur. Cette tendance est particulièrement marquée sur les zones où le Célé a une mobilité latérale.

Dans l’état des lieux de la DCE, l’état hydromorphologique est considéré comme bon sur l’ensemble des masses d’eau excepté sur le Célé entre la confluence avec le Veyre et la confluence avec le Drauzou (de Linac à Camboulit). La perturbation principale recensée sur ce tronçon est la présence d’urbanisation et de voies de communication. Signalons aussi que, selon cet état des lieux la sucession de moulins sur l’Anès (Cantal) perturbe le fonctionnement hydrologique du cours d’eau.

4.4.2 Le lit et les berges

La berge d’un cours d’eau délimite le lit mineur\(^1\) du lit majeur\(^2\). Elle est constituée d’une partie végétale (ripisylve) et d’une partie minérale.

La berge maintient le cours d’eau dans le lit mineur. C’est un écosystème complexe qui sert d’abris à la faune semi aquatique et terrestre et constitue une zone de transition exploitée par les espèces végétales.

\(^1\) Lit mineur : chenal perpétuellement en eau

\(^2\) Lit majeur : Ensemble de la vallée inondé par les crues annuelles ou décennales
L’état physique des berges et du lit du Célé est étroitement lié à celui de la végétation qui les soutient, mais aussi à la nature du sol qui les constitue.

4.4.2.1 Les berges

- **Le Célé** :

 A titre d’illustration, est présenté ci-dessous l’état des berges du Célé sur l’intégralité de son linéaire et sa dépendance directe avec la nature du substrat et l’occupation de l’espace environnant (activités humaines) :

 - **A quelques dizaines de mètres de sa source**, le Célé n’est encore qu’un ru à l’écoulement déjà suffisant pour avoir incisé les roches granitiques et schisteuses résistantes. Entre ravin et véritable gorge ; le Célé parcourt sur près de quatre kilomètres le plateau dit "Les Étangs" et traverse les prairies de la châtaigneraie. Sa pente y devient brutalement plus faible et son encaissement, quasi nul, rend le lit du Célé très dépendant des travaux humains. La ripisylve y est totalement absente et le pâturage en bord immédiat du cours d’eau favorise les divagations du lit.

 - **À l’aval de Cassaniouze** la pente augmente à nouveau et la vallée du Célé présente désormais une gorge profonde, encaissée dans le plateau cristallin schisteux de cet amont bassin. Le boisement assez dense permet une stabilité de ses versants, protégés de toute crise érosive ou ravinement trop important.

 - **Entre Mourjou et St Constant** la vallée en gorge laisse apparaître un plancher alluvial encore très étroit et irrégulier. Les berges sont peu érodées, mais le surpâturage sur quelques parcelles attenantes à certaines exploitations agricoles réduit le boisement et rend les berges sensibles à l’érosion.

 - **De l’amont de St Constant à Bagnac**, le Célé circule dans le fossé comblé d’éléments détritiques. Le processus d’alluvionnement tend à remplacer l’érosion fluviale et l’encaissement de la rivière est souvent artificiel. Cette vallée à fond plat, est occupée par des prairies et de la polyculture (plus rare). Le substrat limono-sableux des berges les rend sensibles à l’érosion. Les protections de berges qui ont « fleuri » provoquent une "chenalisation" du lit.

 - **À l’aval de Bagnac**, le Célé retrouve des gorges cristallines (gneissiques cette fois) et ce jusqu’à Figeac. La vallée redevient étroite et les versants raides et boisés. Le lit du cours d’eau est bien délimité par des bourrelets de berges stables.

 - **De l’amont de Figeac à Boussac**, brusquement, la vallée s’élargie et les pentes s’amincissent : le Célé entre dans la zone de Marnes plus tendres. Les dépôts meubles largement répandus issus de l’amont - bassin (sables et limons de crue) forment une vallée vulnérable à l’érosion fluviale. Les berges stabilisées par des ouvrages...
Les affluents :

A l’exception du Drauzou et de la Sagne, les affluents du Célé connaissent une hydrogéologie similaire à celle du Célé amont. Les pentes, la nature du substrat et les activités humaines y ont façonné les berges et le lit de ces cours d’eau. Assis sur des roches métamorphiques (gneiss notamment), les têtes de bassin démarrent généralement sur les plateaux du Ségala et de la châtaigneraie où l’activité agricole (élevage) est assez importante. Les cours d’eau démarrent d’une source qui alimente des zones humides avant de constituer un cours d’eau qui serpente entre prairies et boisements. Les berges sont peu marquées et souvent dégradées par le passage répété des animaux.

Avec la pente qui s’accentue, les cours d’eau s’enfoncent dans les bois et rejoignent les gorges plus ou moins encaissées, généralement boisées. Les berges y sont de fait plus stables, sauf quand un élargissement ponctuel de la vallée a permis des dépôts alluvionnaires et l’installation d’une zone de pâture. La végétation des berges alors très souvent réduite à un cordon rivulaire très étroit et la nature alluvionnaire du substrat favorisent la naissance d’encoches d’érosions ponctuelles mais parfois importantes.

Le cours d’eau poursuit sa progression de zones encaissées en replats avant de rejoindre une vallée plus élargie et de se jeter dans la Rance ou le Célé.

Le Drauzou et ses affluents, prennent naissance sur un relief plus collinéen et les gorges qu’ils traversent sont moins prononcées que celles de l’amont. Par contre, la pression agricole plus forte, permise par un milieu plus ouvert et moins pentu ainsi que la nature sablo-limoneuse des berges engendrent des érosions de berges fréquentes et parfois impressionnantes.

Sur la Sagne, enfin, les talus de berges sont presque inexistantes. Les concrétions calcaires provoquent parfois un exondement du fond du lit qui devient à terme problématique car provoquant la naissance de nouveaux « axes de circulation » des eaux superficielles.

Globalement, les berges des affluents du Célé sont plutôt vulnérables en tête de bassin (pression agricole, fragilité du substrat et absence de ripisylve), plutôt protégées de l’érosion dans les gorges et les parties plus encaissées (boisements denses, nature du substrat) et à nouveau fragiles au profit d’une zone de replat ou à l’arrivée dans la vallée élargie, là où la pression urbaine ou agricole (pâturage, culture) s’accroît.
4.4.2.2 Le fond du lit

Le fond du lit suit la même logique : Les particules fines, sableuses du fond des cours d’eau de l’amont donnent rapidement place à des fonds plus caillouteux (galets) accompagnés dans les gorges de blocs granitiques ou métamorphiques de grande taille, mais aussi de particules plus fines (sables notamment) qui peuvent recouvrir d’importants linéaires (zones de calme) ou à l’inverse se déposer dans des petites cavités créées entre de plus gros cailloux (habitat privilégié pour la Moule perlée par exemple). La roche mère affleure directement dans certains secteurs.

A la sortie des vallées encaissées les gros blocs se font nettement plus rares et le fond caillouteux renferme davantage de galets de petite taille et de sables. Dans les plaines de la Rance puis du Célé, le dépôt de particules plus fines (limons) s’accentue, colmatant une partie des fonds dans les zones de calme (amont des chaussées de moulin par exemple). Au niveau des radiers, le fond reste composé de blocs de tailles variées, parfois importantes (blocs calcaires en basse vallée par exemple). La roche mère affleure également par endroits.

Les usagers des cours d’eau constatent depuis quelques années un ensablement croissant du fond du lit du Célé et de ses affluents. Ce phénomène est aggravé par certaines pratiques d’aménagement de l’espace telles que les défrichements, les travaux routiers, les sols laissés nus en hivers, les drainages ...

4.4.3 La Ripisylve

4.4.3.1 Fonctions de la ripisylve

La ripisylve est la végétation arborescente ou arbustive de la berge. Elle joue un rôle prépondérant dans la qualité du cours d’eau, du fait de ses multiples fonctions :

- Fonction mécanique : la végétation a un rôle fondamental dans la fixation du fond et des berges. Dans ce contexte, l’analyse structurale du couvert végétal est importante (qualité du port de l’enracinement, stratification et zonation de la végétation).

- Fonction d’habitat écologique : outre la valeur intrinsèque des populations végétales, elle est déterminante pour la richesse faunistique, tant du point de vue des milieux aquatiques que des milieux terrestres. En particulier, les peuplements herbacés semi aquatiques (roselières et cariçaies), ainsi que les formations ligneuses des berges, abritent une faune terrestre spécialisée qui présente souvent un grand intérêt pour le fonctionnement de l’écosystème et pour la biodiversité.

- Fonction de filtre et de protection : au même titre que les haies, la ripisylve joue un rôle significatif de protection contre l’érosion des sols et permet, si son épaisseur et sa densité sont suffisantes, de limiter les apports azotés et phosphorés issus du ruissellement des terres.

- Fonction d’ombrage : par son développement, elle limite l’ensoleillement et le réchauffement local des eaux, freinant ainsi les phénomènes d’eutrophisation (prolifération végétale macro ou microscopique).

- Fonction paysagère : l’impact visuel des formations riveraines n’est pas à négliger : la ripisylve souligne l’existence du cours d’eau. Les opérations d’entretien ont une incidence directe sur cette fonction.

La ripisylve conditionne également la dynamique du cours d’eau : impact sur l’écoulement de l’eau, présence de branches et branchages dans la rivière, dépôts, stabilité des berges ... L’absence de
4.4.3.2 État de la ripisylve sur le bassin du Célé

L’essence dominante est l’aulne glutineux. Les ripisylves de type Aulnaies-frênaies abritent une flore particulière qui héberge de nombreuses espèces rares telles que le géranium noueux, l’impatiente ne me touchez pas, l’anémone fausse renoncule…

La végétation des berges des cours d’eau du bassin est globalement en mauvais état sanitaire. Ce mauvais état connaît plusieurs origines :

- Une dynamique fluviale naturelle altérée (érosion, dynamique végétale), dégradée par les actions humaines. C’est notamment le cas sur le Célé en aval de Figeac ou sur la Rance au niveau de Maurs.
- Un abandon et un manque d’entretien des boisements de berges sur la majorité du linéaire.
- Un abaissement de la ligne d’eau, du fait de la ruine de certains seuils, favorisant le dépérissement de certaines espèces (aulnes principalement). Ce problème se retrouve entre Figeac et Espagnac Sainte Eulalie sur le Célé, au niveau de Saint Constant et sur des petits affluents.
- La plantation d’essences non adaptées de type stationnel (peuplier hybride, robiniers faux acacias…) qui peuvent être des portes d’entrées pour les parasites et leur développement. De plus, lorsque ces essences, ont un faible développement racinaire, elles assurent mal la protection des rives contre l’érosion, et la fonction d’épuration des pollutions agricoles.

La ripisylve étant globalement malade (par exemple, le Phytophthora pour l’Aulne) et vieillissante sur le bassin du Célé, un appauvrissement spécifique de la végétation des berges est observable qui peut conduire à une baisse de la biodiversité et une tendance à la monospécificité des peuplements rivulaires. Par ailleurs, le dépérissement et la sénescence de la ripisylve, entraînent la formation de bois morts qui peuvent alimenter les embâcles et accentuer ainsi les risques de crues.

Les travaux de restauration des berges entrepris dans le cadre du Contrat de rivière (2000 – 2006) ont permis de rajeunir les peuplements et de libérer la section d’écoulement sur le Célé (Cf. 4.4.4.2). Ils doivent se poursuivre sur ses affluents.

La carte 18, synthétise l’état hydromorphologique des principaux cours d’eau et l’état des berges sous la forme d’un état physique des milieux aquatiques.

4.4.3.3 Espèces végétales envahissantes

Les berges du bassin versant du Célé sont aussi touchées par la colonisation d’espèces exotiques envahissantes (principalement la Renouée du Japon, la Datura, mais aussi l’Erable négundo et le Robinier faux acacia13) sur les secteurs où la frange de feuillus a disparu ou a été remplacée par des

13 Le Robinier faux acacia n’est pas classée parmi les espèces envahissantes mais peut localement coloniser des zones de façon monospécifique lorsqu’il est entretenu trop fréquemment (ex: le long du réseau SNCF entre Bagnac sur Célé et Figeac).
plantations artificielles. Ces espèces ont la faculté de se multiplier au détriment des espèces indigènes, notamment dans les espaces remaniés par les activités humaines.

La Renouée du Japon colonise les parties aval de la Rance, de l’Arcambe et le Célé entre Bagnac et Espagnac. Le Robinier se retrouve un peu plus en amont sur le Célé le long de la voie ferrée et jusqu’à St Sulpice, et sur le Drauzou (voir carte 17).

Aucune action de lutte n’a été engagée, à ce jour, sur le bassin hydrographique mais des projets en ce sens doivent se développer si les berges et les espèces adaptées veulent être sauvegardées.

4.4.4 Entretien et restauration des cours d’eau

Sources :
Plan de gestion des déchets flottants, du lit mineur et des berges de la rivière Célé,
Laetitia Vental - Association pour l’Aménagement de la Vallée du Lot, 2004

4.4.4.1 Aspects réglementaires

<table>
<thead>
<tr>
<th>Article L210-1 du Code de l’Environnement: « L’eau fait partie du bien commun de la nation. Sa protection, sa mise en valeur et le développement de la ressource utilisable, dans le respect des équilibres naturels, sont d’intérêt général ».</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article L215-14 du Code de l’Environnement (issu de l’article 114 du Code Rural) : Tout propriétaire riverain est tenu à : « un curage régulier pour rétablir le cours d’eau dans sa longueur et sa profondeur naturelle, à l’entretien de la rive par élagage et recépage de la végétation arborée et à l’enlèvement des embâcles et débris flottants ou non, afin de maintenir l’écoulement naturel des eaux, d’assurer la bonne tenue des berges et de préserver la faune et la flore dans le respect du bon fonctionnement des écosystèmes aquatiques. »</td>
</tr>
</tbody>
</table>

L’obligation d’entretenir les cours d’eau revient donc au propriétaire du lit et des berges.

Source de multiples richesses, les cours d’eau étaient autrefois entretenus par nécessité : les arbres morts et embâcles servaient de bois de chauffage, les rejets des saules et des aulnes, fréquemment recépés, nourissaient le bétail, les biefs aménagés conduisaient l’eau aux moulins… Progressivement, les propriétaires riverains se sont affranchis de la plupart de ces anciennes dépendances.

Sur le bassin du Célé, l’absence d’entretien des rivières jusqu’en 2002 s’explique facilement :
- les parcelles agricoles se sont agrandies alors qu’en parallèle, la main d’œuvre a diminué, rendant le travail d’entretien long et coûteux ;
- les modes de vie ont évolué : de nombreux riverains ne travaillent plus la terre, n’ont plus le temps d’intervenir ou ne savent plus comment ;
- la végétation des berges représentait une ressource intéressante (bois de chauffage, alimentation du bétail), qui n’est plus utilisée actuellement…

L’article L211-7 du Code de l’Environnement offre aux collectivités locales la possibilité de se substituer aux riverains défaillants et d’intervenir dans l’entretien des rivières « non domaniales ». Leur intervention ne peut se faire qu’avec l’accord du propriétaire riverain et pour l’exécution de travaux, ouvrages ou installations présentant un caractère d’intérêt général ou d’urgence.

4.4.4.2 Les campagnes d’intervention sur les berges

a) Avant le Contrat de rivière Célé :

Trois Syndicats Intercommunaux d’Aménagement Hydraulique (SIAH) existaient sur la partie lotoise du bassin du Célé avant le démarrage du Contrat de rivière Célé (2000) :

- SIAH du Haut Célé (amont de Figeac jusque Bagnac) ;
- SIAH de la Vallée du Célé (Figeac et son aval) ;
- SIAH Drauzou-Dourmelle.

De ces trois structures, seul le SIAH Drauzou - Dourmelle avait initié des travaux de restauration des milieux aquatiques sur le Drauzou et la Dourmelle. La communauté de communes Lot-Célé avait également mis en œuvre un programme de restauration de la Sagne.

Dans le département du Cantal, aucun syndicat n’avait été créé. Toutefois, la commune de Maurs avait réalisé une opération de restauration des berges de la Rance en 1991, sous maîtrise d’œuvre de la DDAF du Cantal. Cette opération s’est révélée trop soutenue (recalibrages…) et est source aujourd’hui de nombreux disfonctionnements sur la Rance (encoches d’érosion, embâcles…).

Les autres cours d’eau du bassin hydrographique n’ont pas bénéficié d’actions de restauration ou d’entretien des cours d’eau, à l’exception des opérations entreprises localement par les Fédérations départementales ou Associations Agrées pour la Protection des Milieux aquatiques (FDPPMA ou AAPPMA) ou les propriétaires riverains.

b) Dans le cadre du Contrat de rivière

- Organisation :

Afin de réaliser les actions de restauration des berges et des milieux aquatiques préconisés dans le cadre du Contrat de rivière Célé, 6 communautés de communes du bassin versant ont pris la compétence « restauration et entretien des berges » en 2000 :

- dans le Lot :
 - Communauté de communes Lot-Célé
 - Communauté de communes Figeac-Cajarc
 - Communauté de communes de la Vallée et du Causse

- dans le Cantal :
 - Communauté de communes du Pays de Montsalvy
 - Communauté de communes du Pays de Maurs
 - Communauté de communes Cère et Rance en Châtaigneraie

Les communautés de communes du Haut – Ségala et Causse – Ségala – Limargue, riveraines d’affluents du Célé n’ont pas souhaité prendre cette compétence dans un premier temps. Ces communautés sont à cheval sur deux bassins (Bave et Célé), ce qui rendait ces modifications de statuts difficiles puisque aucune action en ce sens n’était menée sur la Bave.

3 techniciens de rivière ont été chargés de réaliser les diagnostics des cours d’eau, de concevoir le programme de travaux (cahiers techniques d’intervention…) et d’effectuer des interventions (sensibilisation, coupes…) ne nécessitant pas de gros moyens humains et matériels.

Ces techniciens de rivière sont rattachés aux territoires suivants :

- Le technicien de rivière du Parc Naturel des Causses du Quercy intervient sur les Communautés de communes Lot-Célé et Vallée et Causses (en place avant l’arrivée du Contrat de rivière).
- Le technicien de rivière de la communauté de communes Figeac-Cajarc (recruté en 2000) qui intervient sur son territoire.
- Le technicien de rivière de la communauté de communes du pays de Maurs (recruté en 2001) qui intervient sur les trois communautés de communes du Cantal situées sur le bassin versant...
du Célé.

Ces travaux simples ou faisant appel, parfois, à des techniques pointues (pelles amphibies) ont été confiés à des entreprises spécialisées. Ils ont été découplés en plusieurs phases, notamment afin de procéder de l’aval vers l’amont et de maintenir les usages de la rivière (pratique du canoé en aval de Bagnac et de la pêche sur le Célé).

- **Les travaux réalisés**

Plusieurs objectifs se sont dégagés des inventaires de terrain réalisés par les techniciens de rivière du territoire :

- lutter contre les phénomènes de crues et d’inondations (embâcles, arbres morts) ;
- redonner ses fonctions à la ripisylve (protection des terres riveraines, épuration des eaux…) ;
- rajeunir les peuplements et augmenter la biodiversité (notamment en réimplantant des espèces autochtones) ;
- lutter contre l’uniformisation du paysage et contre la prolifération des espèces envahissantes ;
- stabiliser les berges en limitant l’érosion et en restaurant celles érodées (techniques végétales…) ;
- protéger les zones à enjeux importants (ponts, génie civil…) ;
- prévenir le risque de formation d’embâcles.

Les opérations de restauration des berges lancées depuis 2003 présentent des résultats intéressants : impacts positifs visibles notamment lors de la crue cinquantennale de décembre 2003, à la fois pour le milieu aquatique et pour le libre écoulement des eaux.

A ce jour, l’intégralité du Célé à l’aval de Figeac a été restaurée. La partie amont de Figeac (Figeac-Viazac) dans le Lot et le Célé Cantalien sont en cours de restauration.

Quelques actions d’accompagnement ont également été imaginées pour contribuer aux efforts de maintien en état des berges :

- Le programme agricole Célé y prévoyait le développement de mesures agri environnementales (notamment dans le cadre du Contrat d’Agriculture Durable) qui devaient permettre une participation des exploitants agricoles volontaires à la gestion de leurs berges et des milieux aquatiques. Les mesures retenues étaient les suivantes : « gestion des berges », « mise en place de points d’abreuvement » (qui sont souvent causes d’érosions de berge) et de « bandes enherbées en bordure des rivières » (permettant notamment de diminuer les transferts de charges polluantes vers le cours d’eau, et de limiter les risques d’érosion et l’impact des crues). Ce programme s’est achevé en décembre 2006. Les enveloppes financières réduites n’ont pas permis le développement des CAD comme espéré.

- Les actions des pêcheurs : les fédérations et associations de pêche ont également lancé quelques opérations ponctuelles d’entretien des cours d’eau sur lesquels les droits de pêche leur ont été rétrocédés. Plusieurs tronçons du Bervezou ont ainsi été traités.
c) Organisation et travaux futurs

- Organisation :

Afin de pérenniser les actions menées dans le cadre du Contrat de rivière Célé et de préparer la mise en œuvre des actions du futur SAGE, le syndicat mixte du bassin de la Rance et du Célé a été créé le 29 mai 2007. Il assurera la maîtrise d’ouvrage des travaux de restauration et d’entretien des milieux aquatiques et alluviaux pour le compte des communautés de communes et communes membres.

Toutes les communautés de communes riveraines de cours d’eau ont décidé d’adhérer à cette nouvelle structure ce qui permettra de programmer des interventions futures sur l’ensemble du territoire et sur certaines têtes de bassin à ce jour non entretenues (Drauzou, Dourmelle, Bervezou, Veyre et leurs affluents).

L’organisation arrêtée pour la réalisation des travaux d’entretien et de restauration des milieux aquatiques est la suivante : les techniciens de rivières apporteront leur soutien technique au syndicat mixte qui assurera une coordination des interventions, proposera un programme annuel de travaux à ses membres et en assurera la maîtrise d’ouvrage.

- Travaux prévus :

Malgré les importants travaux de restauration des berges réalisés sur le Célé, la ripisylve fournira inlassablement du bois mort. Celui-ci et les autres déchets mobilisables lors de crues, généreront donc toujours des complications tels que les embâcles au droit de certains ouvrages (ponts et chaussées), des risques pour la pratique des loisirs aquatiques et une atteinte au paysage (perception visuelle négative).

Les déchets non naturels volontairement rejetés (dépôts et décharges sauvages) ou mobilisables par la rivière lors des crues (plastiques, balles de foin,...) ont fait l’objet de journées de nettoyage organisées annuellement depuis 2000. Elles ont permis de sensiblement réduire le volume de gros déchets dans le lit mineur. Mais il s’agit d’une opération à renouveler chaque année. De plus, la présence d’importants atterrissements (sérieusement engraisssés et végétalisés) et d’encoches d’érosions (longues de plusieurs dizaines de mètres) exige l’emploi de techniques spéciales et souvent onéreuses pour limiter leurs impacts négatifs.

La complexité et le coût des travaux d’entretien de la ripisylve font que la plupart riverains ne l’assumeront pas. Se pose alors la question de la pérennisation des actions entreprises. Une réflexion sur la mise en place d’un plan de gestion des milieux aquatiques et alluviaux a donc été lancée.

Ce plan de gestion récemment validé a pour objectifs de protéger et de gérer les milieux aquatiques et alluviaux afin d’en préserver les fonctionnalités naturelles d’auto-épuration et de régulation du régime des eaux et de maintenir durablement leur valeur écologique essentielle aux activités économiques et sociales.

Il comprend :
- le suivi (veille permanente) annuel et post événements exceptionnels, de l’évolution des principaux cours d’eau du bassin hydrographique et des ouvrages présents sur ces derniers ;
- l’élaboration de programmes d’entretien et de restauration de la végétation des berges ; de gestion des atterrissements, des déchets flottants et des espèces envahissantes ;
- la réalisation de campagnes d’information, de conseils et de sensibilisation à destination des particuliers et collectivités territoriales.

Les diagnostics préalables à la réalisation de ce plan démarreront en 2007 pour aboutir à un programme de travaux dès 2008.
État physique des cours d'eau : à retenir !

A l’instar de la grande majorité des rivières de France, les berges et la ripisylve des cours d’eau du bassin du Célé présentent une carence d’entretien depuis plusieurs décennies qui se traduit par une ripisylve vieillissante, en mauvais état sanitaire et qui ne joue plus ni son rôle de maintien des berges ni celui de corridor biologique (biodiversité très médiocre). Les pressions urbaines et agricoles sur les berges en accentuent encore l’instabilité et l’uniformisation (peuplements monospécifiques).

Des actions visant à impliquer les propriétaires riverains ou les gestionnaires de rivières (AAPPMA) dans l’entretien des cours d’eau ont été réalisées par le passé. Elles constituent une piste de travail intéressante pour favoriser l’entretien des milieux aquatiques et alluviaux. Elles ne peuvent toutefois répondre à tous les enjeux et sont notamment difficilement reproductibles sur les cours d’eau principaux (gros calibres).

Depuis 2002, d’importants travaux de restauration de berges ont été entrepris sur le Célé. Malgré leur programmation sur la Rance, les élus et usagers des autres affluents s’impatientent et aimeraient que soient traités les petits chevelus.

L’entretien des rivières du bassin, qu’elles aient été restaurées ou non, restait une interrogation. En effet, les riverains sont, pour la plupart, dans l’incapacité technique et financière d’effectuer ces travaux. Une solution pérenne à l’échelle du bassin hydrographique a donc été imaginée.

Elle a pris la forme d’un plan de gestion des milieux aquatiques et alluviaux qui prendra le relais des travaux de restauration en cours et qui sera orchestré et réalisé annuellement par le syndicat mixte du bassin de la Rance et du Célé. Ce plan de gestion devra répondre aux préoccupations des élus et usagers en programmant des interventions annuelles sur les principaux cours d’eau du bassin, dans le respect des milieux naturels, des usages et au regard des capacités financières des collectivités membres du syndicat.
5 Evaluation de la qualité des eaux du bassin du Célé selon la Directive Cadre européenne sur l’Eau

La Directive Cadre Européenne sur l’eau (DCE) fixe comme objectif environnemental d’atteindre le bon état des eaux (cours d’eau, lacs, eaux côtières, eaux saumâtres, eaux souterraines) d’ici 2015.

5.1 Précisions sur le bon état des cours d’eau

La définition de l’objectif de « bon état » diffère en fonction de la masse d’eau considérée (définition d’une masse d’eau, Cf. préambule, paragraphe 1.1.3).

5.1.1 Méthode d’évaluation de la qualité des eaux de surface

Le bon état est atteint lorsque son état écologique et son état chimique sont au moins "bons".

Bon état écologique : Etat défini par de faibles écarts dus à l’activité humaine par rapport aux conditions de référence du type de masse d’eau considéré. Il s’appuie sur des critères de qualité qui peuvent être de nature biologique (présence d’êtres vivants végétaux et animaux), hydromorphologique ou physico-chimique.

Bon état chimique : Etat atteint lorsque les concentrations en polluants ne dépassent pas les normes de qualité environnementale définies afin de protéger la santé humaine et l’environnement.

5.1.2 Méthode d’évaluation de la qualité des eaux souterraines

Le bon état est atteint lorsque son état quantitatif et son état chimique sont au moins "bons".

Bon état chimique : Etat atteint lorsque les concentrations de polluants ne dépassent pas les normes de qualité et n’empêchent pas d’atteindre les objectifs pour les eaux de surface associées.

Bon état quantitatif : Etat atteint lorsque les prélèvements ne dépassent pas la capacité de renouvellement de la ressource disponible, compte tenu de la nécessaire alimentation des écosystèmes aquatiques de surface, des sites et zones humides directement dépendants.
5.1.3 **Cas particulier des masses d’eau fortement modifiées ou artificielles**

- **Le cas particulier des masses d’eau fortement modifiées ou artificielles**

Les milieux aquatiques de surface ayant subi d’importantes opérations d’aménagement hydromorphologique dans le but de permettre la réalisation d’activités humaines (barrages hydroélectriques…) et celles ayant été créées de toute pièce, font l’objet d’un traitement particulier. Au sens de la DCE, il s’agit de masses d’eau à part entière, sur lesquelles les objectifs environnementaux sont établis en tenant compte de l’état de modification nécessité par ces usages.

Une masse d’eau fortement modifiée est donc une masse d’eau de surface qui ne peut pas atteindre le bon état écologique du fait des altérations physiques ou hydrologiques considérées sur le plan technique et économique comme irréversibles.

L’objectif fixé pour ces masses d’eau est le bon potentiel écologique. Il est défini comme un état ne s’écartant que légèrement de la meilleure situation possible pour la masse d’eau compte tenu des modifications hydromorphologiques rendues nécessaires pour les activités humaines.

5.2 **Etat des lieux du bassin Adour-Garonne et application sur le bassin du Célé**

5.2.1 **Méthode d’analyse retenue pour l’état des lieux du bassin Adour-Garonne**

L’état des lieux du bassin Adour-Garonne vise à identifier les principaux problèmes rencontrés sur ce district pour atteindre le bon état en 2015.

L’état des lieux a été établi sur la base des données existantes et disponibles grâce aux réseaux de surveillance ou d’information déjà en place. Les grilles actuelles d’évaluation de la qualité des eaux (SEQ-eau) ont été utilisées pour apprécier la qualité de l’eau selon les différents paramètres. Dans un second temps, l’analyse de l’évolution de l’état des eaux, de l’application des directives sectorielles (eaux usées, nitrates…) et de l’évolution des activités, a permis d’évaluer le risque que ne soit pas atteint le bon état prescrit par la DCE pour 2015 (Cf. 5.3).

5.2.2 **Qualité écologique des eaux du bassin du Célé**

Rappel : la qualité écologique globale est estimée à partir des données physico-chimiques et biologiques disponibles et des avis d’experts (CSP, fédération de pêche…). Le résultat de la biologie prime sur la physico-chimie pour évaluer la qualité écologique globale. L’hydromorphologie est prise en compte dans l’état des lieux comme un soutien à la biologie, pouvant expliquer l’altération de la vie aquatique.

Qualité chimique :

Les masses d’eau du bassin du Célé sont classées à 90 % en bonne qualité chimique. Les pressions industrielles de traitement de surface présentes sur la masse d’eau 663 (Célé de la confluence avec le Drauzou à la confluence avec le Lot) sont à l’origine des dégradations de la qualité chimique sur cette masse d’eau (mauvaise).
Qualité écologique (synthèse de la qualité biologique et physico-chimique) :
A l’exception du Célé « bagnacois » (masse d’eau 68), de l’Anès (masse d’eau 672) et du Drauzou (masse d’eau 65) les masses d’eau du bassin du Célé présentent une bonne qualité biologique. La qualité hydro morphologique moyenne de l’Anès explique en partie son déclassement. Ce sont les pressions domestiques et agricoles qui sont à l’origine de la qualité biologique moyenne du Célé bagnacois. Sur le Drauzou c’est la qualité physico-chimique qui est moyenne et déclasse la qualité écologique.

Conclusion :
Les eaux superficielles du bassin du Célé sont considérées globalement de bonne qualité avec près de 70 % des masses d’eau en bonne qualité écologique. Les dégradations concernent plus particulièrement les masses d’eau du Célé (663 et 68) et de certains affluents (Anès et Drauzou) qui se caractérisent entre autre par de faibles débits et une forte pression d’élevage.

Par ailleurs, aucune masse d’eau du bassin du Célé n’est considérée comme fortement modifiée.

5.3 De l’état des lieux du bassin Adour-Garonne aux scénarii tendanciels

Autrement dit, le constat de la qualité actuelle et l’application du scénario tendanciel conduisent à la mise en évidence des masses d’eau qui risquent de ne pas atteindre le bon état écologique et le bon état chimique avec 3 grandes catégories :
- Le bon état probable ;
- Un risque à préciser (doute) ;
- Un risque élevé (risque de non atteinte du bon état = risque NAB).

5.3.1 Méthode d’évaluation du risque de non atteinte du bon état

Le risque de non atteinte du bon état des masses d’eau s’évalue différemment selon qu’il s’agit d’une eau superficielle ou d’une eau souterraine.

5.3.1.1 Pour les masses d’eau superficielle

La méthodologie retenue consiste, à partir de leur qualité actuelle, à extrapolier la qualité future en 2015 en fonction des évolutions tendancielles prévisibles en matière de démographie et d’activités économiques au sens large.

Aussi, le constat de l’état de ces milieux comporte-t-il un premier exercice de projection dans le futur de l’évolution des rejets et prélèvements ainsi que de leurs incidences sur les masses d’eau. Telle est la vocation du travail qui a été conduit et qui combine une analyse prospective quantifiée des activités économiques et de la démographie avec des approches à dires d’experts.
5.3.1.2 Pour les eaux souterraines

Une méthodologie nationale a été élaborée afin d'estimer les masses d'eau souterraine pouvant être répertoriées comme "à risque". La méthodologie retenue est différente selon qu'il s'agit du risque qualitatif ou du risque quantitatif.

Pour le risque qualitatif, la méthodologie se fonde sur l'examen des données actuelles en considérant les points de mesure faisant apparaître une situation dégradée. Sont classées à risque les masses d'eau souterraines dont les résultats obtenus sur les sites de surveillance mettent en évidence :
- un état médiocre ;
- ou un état potentiellement médiocre (dépassement de 80% de la norme AEP pour les nitrates par exemple) ;
- ou des tendances d'évolution à la hausse pour les paramètres dégradants.

Les pressions significatives exercées et la vulnérabilité intrinsèque de la masse d'eau (absence de couverture étanche, milieu fissuré, karstique...) constituent également des critères d'identification des masses d'eau susceptibles de ne pas atteindre le bon état chimique.

Pour le risque quantitatif, la méthode tient compte de l'état actuel constaté et de la tendance de la pression de captage à l'horizon 2015.

5.3.1.3 Conclusions

Ce travail a permis de rassembler les éléments nécessaires à la définition des programmes de surveillance, des programmes de mesures et des plans de gestion.

Il convient toutefois de bien mesurer les imperfections de la démarche tendancielle du fait :
- de la nouveauté de cet exercice qui conduit à donner un poids prépondérant aux dires d'experts par rapport à des analyses quantifiées ;
- de l'importance d'aléas événementiels exogènes (ex : PAC, mondialisation) qui peuvent s'avérer d'un impact supérieur aux hypothèses retenues pour la construction des scénarii.

Le scénario tendanciel doit donc être considéré comme un simple outil d'aide à la décision qui sera complété et modifié à l'avenir.

5.3.2 Scénarii tendanciels sur le bassin du Célé

Sur le bassin du Célé, une seule masse d'eau (masse d'eau 68 = Célé de la confluence de la Rance et du Célé à la confluence avec le Veyre) présente un risque de non atteinte du bon état écologique des eaux à l'horizon 2015. La mauvaise qualité hydromorphologique de cette masse d'eau associée à une qualité physico-chimique souvent perturbée (liée à des rejets domestiques, industriels ou agricoles) et à une piètre qualité biologique expliquent ce déclassement.

Un effort particulier en terme de surveillance et d'amélioration des connaissances devra donc être entrepris sur cette masse d'eau afin de mieux appréhender l'origine des dégradations et la nature des travaux à réaliser pour atteindre le bon état en 2015.

A noter que la masse d'eau R 663 (Célé de la confluence avec le Drauzou à sa confluence avec le Lot) a été jugée en risque de non atteinte du bon état chimique, du fait notamment des pressions domestiques actuelles (problèmes de traitement de l'assainissement de Figeac). Toutefois, cette masse d'eau n'a pas été classée en risque de non atteinte du bon état écologique, son état biologique ayant été jugé satisfaisant.
5.4 Le Programme de mesures envisagé

Depuis 2005, le travail de définition des mesures de gestion à intégrer au futur SDAGE a été lancé à l'échelle des grands sous bassins d'Adour-Garonne (ex : Lot). Les experts et organismes intervenants dans le domaine de l'eau ont été invités à participer à des groupes de travaux pour proposer un premier programme de mesures comprenant des actions à l'échelle des unités hydrographiques de référence et à l'échelle des sous – bassins.

5.4.1 Enjeux retenus sur le bassin du Célé

Les principaux enjeux concernant le bassin du Célé sont les suivants :
- Préserv er et reconquérir la qualité des eaux pour garantir les usages de loisirs aquatiques (baignade et canoë – kayak) sur l'ensemble des rivières et lacs ;
- Préserver et réhabiliter le bon fonctionnement des rivières pour maintenir de bonnes conditions de vie aquatique et piscicole et restaurer les phénomènes de régulation naturelle et la dynamique fluviale ;
- Améliorer la prévention et l’alerte aux crues ;
- Améliorer la connaissance des aquifères karstiques et sauvegarder leur qualité en particulier pour l’AEP.

5.4.2 Principaux dysfonctionnements retenus sur le bassin du Célé

Ils sont au nombre de quatre :
1. Dégradation par des pollutions organiques, azotées, phosphorées et micropolluants toxiques :
 - Domestique et industrielle : Sur le Célé et la Rance (ME 671, 663 – 68 – 70) avec Figeac et Maurs en particulier ;
 - Agricole : Intensité et nombre important d'élevages sur les bassins du Célé moyen, Rance et leurs affluents
2. Dégradation de la biologie et de la morphologie (nombreux seuils) des petits cours d'eau amont, en particulier sur l’Anès (ME 672) ;
3. Faible cohérence des procédures de gestion des crues à l'échelle interdépartementale ;
4. Déficit de connaissance du fonctionnement des Causses du Quercy (ME 5038).

5.4.3 Programme de mesure proposé pour le bassin du Célé

5.4.3.1 Enjeux et mesures concernant l'intégralité du bassin

Agriculture :
- Réduction des rejets d'élevage et modification des pratiques culturales.

Eau potable :
- Mettre en œuvre des programmes d'actions pour limiter les pollutions liées à l'épandage.

Loisirs aquatiques :
- Gérer et entretenir efficacement les ouvrages de traitement des effluents domestiques et éliminer les rejets directs pour permettre les loisirs aquatiques.
Milieux naturels :
- Mettre en œuvre les actions programmées dans l'inventaire des zones humides ;
- Améliorer les connaissances en biologie avec création d’un observatoire d’espèces repères.

5.4.3.2 Enjeux et mesures concernant certaines masses d’eau

Gestion des débits :
- Améliorer le fonctionnement et l’efficacité des ouvrages existants (ME 662, 663) ;
- Renforcer le suivi des débits pour optimiser la gestion réglementaire et contractuelle (ME 66, 67, 663) ;
- Adapter les prélèvements aux conditions naturellement sensibles des cours d’eau de piémont (ME 662, 68, 671, 672, 67) ;

Gestion des défrichements :
- Réaliser une cartographie des boisements et hiérarchiser leur importance\(^{14}\) (ME 65, 66, 67) ;
- Euter le défrichement en bord de cours d’eau en maintenant une bande boisée d’au moins 20 m (ME 66, 67, 672, 671, 68, 662) ;
- Mener des programmes d’animation et de sensibilisation avec les professionnels de la filière (ME 66, 67, 672, 671, 68, 662).

Gestion des érosions :
- Adapter les pratiques agricoles (ME 671, 68, 672, 67, 66).

\(^{14}\) Ce travail est en partie déjà réalisé par les organismes forestiers.
CHAPITRE 3 : USAGES ET FONCTIONS DE L’EAU ET DES MILIEUX AQUATIQUES

N.B. : L’ordre de présentation des différents thèmes ne préjuge en rien de l’importance des usages et des enjeux qui leurs sont associés.

1 Alimentation en eau potable

1.1 Le contexte

Le maire est responsable de la distribution publique d’eau potable dans sa commune. Même en cas de regroupement de communes, il reste responsable de la qualité de l’eau distribuée.

La gestion du service est assurée, soit directement en régie, soit déléguée à une société spécialisée.

Le contrôle est fait par les Services Santé-Environnement des Directions Départementales des Affaires Sanitaires et Sociales (DDASS). Les analyses sont réalisées par des laboratoires agréés par le ministère de la Santé. Les résultats de ces contrôles sont transmis aux maires et aux gestionnaires des ouvrages de distribution d’eau, avec, si la situation sanitaire l’exige, des demandes de remise à niveau des dispositifs de sécurité.

Le maire doit afficher en mairie les résultats du contrôle sanitaire de l’eau potable transmis par la DDASS, au maximum deux jours ouvrés après leur réception. En cas d’anomalie constatée sur un prélèvement, un nouveau prélèvement est réalisé. Le maire est prévenu lorsque l’eau distribuée n’est pas conforme aux critères de potabilité.

1.2 Les usagers et leurs représentants

- **Les Usagers :**

La population alimentée en eau potable par les ressources du bassin du Célé n’est pas égale à la population présente sur le bassin :

- l’eau prélevée sur le bassin permet également d’alimenter des usagers situés en dehors du bassin (ex : captages de la Pescalerie, de Longuecoste);
- une partie de la population du bassin est alimentée par des ressources extérieures au bassin (ex : lac du Tolerme). Il est donc difficile d’évaluer la population alimentée par les prélèvements effectués sur le bassin du Célé.

- **Les gestionnaires :**

37 exploitants interviennent sur le bassin du Célé, 11 dans le Lot, 24 dans le Cantal et 2 dans l’Aveyron (voir [carte 19]).
Les autres captages sont exploités directement par des mairies, des Syndicats Intercommunaux d’Adduction d’Eau Potable (SIAEP) ou des sociétés privées (Ratier).
Au total, 8 SIAEP interviennent sur la partie lotoise du bassin :
- Vallée du Céle
- Bournac
- Francoules
- Eaux de la Pescalerie
- Faycelles Frontenac
- Livernon
- Sud Ségala
- Causse sud Gramat

- **Dans le Cantal**, les 38 UDI sont regroupées dans 24 UGE. Ce sont majoritairement les communes qui exploitent et sont maître d’ouvrage des captages.
Seuls 7 captages (sur 70) sont exploités par des syndicats :
- SI de Saint Etienne de Maurs / Saint Constant
- Syndicat de la Fontbelle
- Syndicat de Saint Santin de Maurs / Montmurat

- **Dans l’Aveyron**, les deux unités de distribution du territoire sont gérées par deux UGE différentes. La plus grande partie de la commune de Saint-Santin d’Aveyron est alimentée par le SIAEP Nord Decazeville, seul le centre bourg est alimenté directement par la commune.

1.3 Volumes prélevés

La production d’eau potable sur le bassin du Céle s’effectue essentiellement à partir des sources et rivières et se caractérise par la multiplicité des points de captage. Elle est en cela très différente des autres pompages du département du Lot.
Selon les données de l’Agence de l’Eau Adour-Garonne, environ 3 860 000 m3 d’eau ont été prélevés sur le bassin du Céle en 2004 pour l’alimentation en eau potable dont 85 % en eau superficielle (rivières et sources) et 15% en nappe phréatique.

<table>
<thead>
<tr>
<th>Sous bassin</th>
<th>Rivière/Source (m3)</th>
<th>Nappe d’accompagnement (m3)</th>
<th>Nappe captive (m3)</th>
<th>Total (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Céle</td>
<td>3 287 475</td>
<td>573 741</td>
<td>-</td>
<td>3 861 216</td>
</tr>
</tbody>
</table>

Tableau 37 : Prélèvements pour l’Alimentation en Eau Potable sur le bassin du Céle

Sources : AEAG, 2004

Pour évaluer l’impact des prélèvements pour l’AEP, le Plan de Gestion des Etiages du Lot distingue les volumes prélevés, indiqués ci-dessus des volumes consommés. En effet, après usage une part de l’eau distribuée retourne au milieu par la voie de l’épuration (rejets des stations d’épuration ou des systèmes d’assainissement autonome). Dans le premier cas, l’eau rejetée participe au bilan des cours d’eau. Dans le second cas, elle est considérée comme “perdue”.

15 L’Unité de Distribution (UDI) représente une zone géographique où le réseau d’adduction délivre une eau de qualité homogène aux abonnés, est géré par le même exploitant, et appartient au même maître d’ouvrage.
Une unité de distribution peut-être alimentée par un ou plusieurs captages (ressources) et comporter un ou plusieurs équipements de traitement (production).

Pour la période d’étiage (Juin à Octobre) les auteurs du PGE ont considéré que les mois de juillet et août représentaient une consommation double des autres mois. Un ratio de 6/12 a donc été appliqué sur les prélèvements pour tenir compte de la pointe de demande touristique et de l’impact en année sèche des transferts vers les réseaux de distribution publique d’une partie de l’abreuvement des animaux. Ce mode de calcul a été utilisé pour évaluer les volumes consommés pour l’AEP par sous bassin. Pour être plus proche de la réalité les débits moyens (et non nominaux) des stations d’épuration ont été pris en compte lorsque cette donnée était disponible.

Les données de 2002, 2003 et 2004 montrent une forte augmentation (7,7%) des prélèvements entre 2002 et 2003, suivie d’une augmentation moindre entre 2003 et 2004 (1,8 %).

Sur la base de la population maximale du bassin (permanente et saisonnière) et d’une consommation par habitant de 150 L par jour, la consommation d’eau potable pour les usages domestique serait d’environ 2 330 000 m3/an, soit 60 % des prélèvements AEP de 2004. Si l’on prend en compte la consommation par habitant dans les milieux ruraux, qui est estimée à 120 L par jour, la consommation d’eau serait de près de 1 865 000 m3/an, soit 48 % des prélèvements AEP de 2004. Selon les simulations les autres usages (agriculture et industrie) utiliseraient donc 40 à 52 % des prélèvements AEP.

Volumes prélevés : à retenir !

Les prélèvements d’eau pour l’alimentation en eau potable sur le bassin du Célé représentent 3 861 216 m3 par an (données 2004). Moins de la moitié de ces prélèvements seraient destinés à un usage domestique. Les éventuelles actions d’économie d’eau devront donc prendre en compte les autres usages de l’eau potable : abreuvement du bétail, industries...
1.4 Ressources sollicitées

Le contexte hydrologique est fort différent entre le département du Lot et celui du Cantal et influe sur les ressources sollicitées :

- **Dans le Lot** :
 - **Aquifères karstiques** : de taille conséquente, ils constituent une ressource importante pour l’alimentation en eau potable. Les captages AEP sont peu nombreux mais offrent un débit important. En théorie, ils pourraient être protégés et gérés efficacement. Toutefois, le manque de connaissance concernant la circulation des eaux souterraines, et les caractéristiques du karst fait que ces ressources sont particulièrement vulnérables et demeurent difficiles à protéger.
 - **Ségala** : les pompages en rivière sont assez fréquents sur cette partie du territoire. Ces prélèvements offrent un débit important mais sont très vulnérables à la pollution et nécessitent un traitement obligatoire.

- **Dans le Cantal** :

 Les aquifères (sources, puits, forages) sont de taille très réduite. Les captages produisent de faibles volumes d’eau potable et plusieurs points sont souvent nécessaires pour alimenter une commune. Par manque de moyens, les traitements sont souvent insuffisants et de nombreux captages ne sont pas protégés.

1.4.1 Captages AEP en eaux superficielles

Ils sont au nombre de 9 sur le bassin versant du Célé (voir carte 19).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Veyre</td>
<td>Veyre</td>
<td>Limite Bagnac/Linac</td>
<td>Commune de Bagnac</td>
<td>Bagnac</td>
<td>344 m³/jour</td>
<td>DUP en 1995</td>
</tr>
<tr>
<td>Prentegarde</td>
<td>Célé</td>
<td>Amont ville de Figeac</td>
<td>Commune de Figeac</td>
<td>Prentegarde et Prentegarde-Gabanelle, Gabanelle et Prentegarde-Gabanelle.</td>
<td>1 579 m³/jour</td>
<td>Avis d’hydrogéologue rendu en 2000, procédure en cours d’étude</td>
</tr>
<tr>
<td>Gabanelle</td>
<td>Bervezou</td>
<td>Limite Prendeignes / Saint Cirques</td>
<td>Commune de Figeac</td>
<td>Gabanelle et Prentegarde-Gabanelle.</td>
<td>778 m³/jour</td>
<td>Procédure en cours</td>
</tr>
<tr>
<td>Longuecoste</td>
<td>Bervezou</td>
<td>Est de Montet-et-Mouxal</td>
<td>SIAEP Sud Ségala</td>
<td>Longuecoste</td>
<td>1 429 m³/jour</td>
<td>Avis d’hydrogéologue rendu en 2000, procédure non poursuivie</td>
</tr>
<tr>
<td>La Ressègue</td>
<td>Ressègue</td>
<td>Mourgou, lieu dit Martory</td>
<td>Si de St Etienne St Constant</td>
<td>St Etienne/St Constant</td>
<td>345 m³/jour</td>
<td>Captage abandonné</td>
</tr>
<tr>
<td>Montmarty</td>
<td>Montmarty</td>
<td>St Constant</td>
<td>Si de St Etienne St Constant</td>
<td>Montmarty</td>
<td>0</td>
<td>Procédure en cours</td>
</tr>
<tr>
<td>Pont du Théil</td>
<td>Moulègre</td>
<td>Le Rouget (moulin du Théil)</td>
<td>Si de la Fontbelle</td>
<td>Fontbelle</td>
<td>?</td>
<td>Avis d’hydrogéologue</td>
</tr>
<tr>
<td>Le Rimal</td>
<td>Rimal</td>
<td>St Julien de Toulouse, lieu dit Le Feyt</td>
<td>Commune de St Julien de Toulouse</td>
<td>St Julien de Toulouse</td>
<td>?</td>
<td>Avis d’hydrogéologue</td>
</tr>
<tr>
<td>Moulin de Cayre</td>
<td>Veyre</td>
<td>Quézac</td>
<td>Commune de Quézac</td>
<td>Quézac</td>
<td>183 m³/jour</td>
<td>DUP en 1995</td>
</tr>
</tbody>
</table>

Tableau 39 : Les prises d’eau en rivière destinées à l’AEP

Sources : DDASS du Lot, MAGE et DDAF du Cantal
ces chaussées est donc indispensable. On citera par exemple le cas particulier de la station de Longuecoste dont l’état se dégrade et qui est simplement entretenue après les crues, et de celle de Mourjou, récente mais dont la chaussée présente un sous cavage important du parement aval et des bajoyers (mur consolidant les rives d’un cours d’eau ou les parois d’une fosse).

1.4.2 Captages AEP en eaux souterraines

82 captages AEP en eaux souterraines sont exploités sur le territoire du bassin du Célé : 17 dans le département du Lot et 65 dans le Cantal.

73 captages sont des sources. 9 captages s’effectuent en puits ou forages.

Les débits prélevés ne sont pas disponibles pour tous les captages. L’analyse des données existantes permet cependant d’observer que les débits sont très faibles dans le Cantal : tous les captages ont un débit moyen inférieur à 10 m3/h. Dans le Lot les débits à l’étiage sont compris entre 18 et 90 m3/h.

Ces différences dans les débits sont liées aux aquifères exploités. Dans le Cantal la majorité des aquifères utilisés pour l’alimentation en eau potable sont situés à l’interface entre la roche et les altérités. Ce sont des aquifères de petite taille et très vulnérables. Tandis que dans le Lot le système karstique engendre des sources de taille importante. Ces ressources qui appartiennent à des Karsts sans couvertures sont cependant fortement sensibles à la pollution diffuse.

[| Ressources sollicitées : à retenir ! |
Il y a seulement 9 captages en eau superficielles sur le bassin du Célé et 82 en eau souterraines.
Les caractéristiques des aquifères utilisés pour l'alimentation en eau potable diffèrent selon les régions naturelles :
- Grands aquifères karstiques sur les Causses :
- Captages en rivières dans le Ségala :
- Multiples captages en sources dans le Cantal. |

1.5 Besoins AEP

La partie ouest du bassin (région des Causses) contient des ressources importantes (Le Piteau à St Sulpice, La Pescalerie à Cabrerets, Source d’Anglade à Sauliac, émergence de Bullac à Boussac…) qui permettent une alimentation généralement suffisante. En été, l’interconnexion des réseaux avec la Bouriane permet de palier les éventuels déficits, observés auparavant sur la commune de Marcilhac sur Célé notamment.

Sur le Ségala les manques d’eau en été sont plus fréquents du fait des faibles réserves capacitaires des ressources. En année sèche ces réserves se révèlent insuffisantes et elles risquent de ne pas pouvoir faire face à la montée des besoins d’ici 2015. La situation fut notamment critique sur le Bervezou en 2003, le SIAEP Sud Ségala n’ayant pas pu respecter le débit réservé du Bervezou, et ayant du acheter et faire livrer de l’eau par camion dans les hameaux isolés.

La commune de Figecompompait aussi sur le Bervezou à la station de Gabanelle qui était exploitée au maximum de sa capacité. La station de Prentegarde, qui prélève sur le Célé, complétait les besoins
de la ville sans fonctionner à son optimum. L'alimentation en eau de la ville était toutefois problématique car elle reposait sur une sécurisation unilatérale des ressources (le Bervezou est un affluent du Célé). De plus, ces prises en rivières sont très vulnérables à la pollution et présentent un caractère acide. Les solutions proposées par le SDAEP pour garantir un approvisionnement en quantité sont la mise en place de grands réseaux, les interconnexions locales et des stockages.

Afin de sécuriser l'alimentation de son réseau la ville de Figeac a lancé une étude pour examiner les conditions d’une réalimentation du réseau par le Lot (interconnexion avec Capdenac Gare). Les conclusions de l’étude sont synthétisées dans la partie 1.8.

Les faibles à très faibles rendements de l’ensemble du réseau sur le bassin tendent à aggraver les problèmes quantitatifs. Leur amélioration permettrait de résoudre en tout ou partie les besoins de pointe pour 2015.

- Département du Cantal :

Le déficit en eau n’est pas préoccupant pour la majorité des Unités de Gestion (UGE), cependant 7 UGE sur 22 connaissent des déficits occasionnels (observés notamment en 2003) et seules 3 UGE se révèlent excédentaires : Quezac, SI de la Fontbelle et Saint-Antoine.

Sur le secteur de Maurs (Boisset, Fournoulès, Le Triouloc, Quézac, Rouziers, Saint Julien de Toursac, Si de St Etienne de Maurs et Si de St Santin) il n’y a pas de déficits inquiétants, excepté pour la commune de Boisset. La commune de Maurs pompe dans la nappe alluviale de la Rance. Depuis 2003 elle connaît des déficits chroniques, les potentialités d’exploitation des puits ayant fortement diminué suite à des travaux de curage du cours d’eau. La satisfaction des besoins en eau de cette ville est l’enjeu majeur de ce secteur. Il conviendrait de dresser un état des lieux des ressources sur le secteur pour envisager des restructurations (interconnexions, maillage…) visant à optimiser l’exploitation des ressources.

Le secteur de Calvinet (Cavinet, Cassaniouze, Mourjou, Sansac Veinazes, Senezergues…) ne connaît pas de déficit chronique, seule la commune de Calvinet a connu des problèmes quantitatifs durant l’été 2003.

La région de Marcolès (Marcolès, Leynhac, Roannes-St-Mary, Saint Antoine, Saint Maret la Salvetat, Vitrac et SI de la Fontbelle) ne rencontre pas de problèmes de production, même si l’été 2003 a montré les limites des systèmes AEP actuels.

- Echanges d’eau

Les Syndicats de la Fontbelle, de Francoules et du Ségala Oriental importent de l’eau sur le bassin versant du Célé respectivement depuis les captages d’Escamel, de Font Polémie et du Tolerme situés hors du bassin. Le volume total importé est de 277 000 m3 par an.

Inversement, 382 000 m3 d’eau sont exportés hors du bassin versant depuis les captages de Font del Piteau, de la Pescalerie et de Longuecoste.

Globalement le bassin du Célé fournit donc en moyenne 100 000 m3 d’eau par an à d’autres bassins (donnees 2003 et 2004). Les exportations auraient plutôt lieu en période de hautes eaux, en basses eaux le bassin du Clé serait déficitaire.

👉 Besoins AEP : à retenir !

Globalement, la quantité de la ressource est suffisante en basse vallée du Célé (quantité et interconnexions avec la Bouriane), plus problématique sur le Figeacois (apport d’eau programmé depuis la Dordogne et le Lot) et insuffisante (en période sèche ou à l’horizon 2015) sur les captages en rivières et en sources du Ségala et de la Châtaigneraie, car très dépendante des précipitations.
1.6 Qualité des eaux distribuées

Sources : DDASS du Lot, DDASS du Cantal

Les données sont issues des résultats d'analyses de qualité effectuées par la DDASS du Lot entre le 01.01.02 et le 31.01.02 et par la DDASS du Cantal entre le 01.01.04 et le 04.08.05. Ces analyses portent sur la qualité bactériologique (recherche de germes témoins) et physico-chimique (concentration en substances naturelles ou artificielles) de l’eau distribuée. Le tableau de l'annexe 5 synthétise ces résultats ainsi que la carte 20.

1.6.1 Les nitrates

Les nitrates sont présents naturellement dans les eaux. Les apports excessifs ou mal maîtrisés d'engrais azotés et les rejets urbains, provoquent une augmentation des nitrates dans les ressources.

Les nitrates dans les eaux de consommation humaine sont dangereux pour la santé. Ils se transforment en nitrites dans l’estomac qui peuvent provoquer la transformation de l’hémoglobine du sang en méthémoglobine, impropre à fixer l’oxygène. Ce phénomène est à l’origine de cyanoses, notamment chez les nourrissons. La consommation d’eau chargée en nitrates ou nitrites par la femme enceinte ou le nourrisson peut constituer un risque.

Une concentration limite dans les eaux destinées à la consommation humaine a été fixée à 50 mg/l. La concentration de 25 mg/l représente une valeur guide qu’il faut s’efforcer de ne pas dépasser.

Sur le bassin du Célé :
Il n’y a aucun problème de concentration en nitrates dans les eaux potables distribuées sur le bassin versant du Célé. Les taux moyens et maximaux de NO₃⁻ sont tous inférieurs à 50 mg/l. De plus la majorité des unités de distribution ont des concentrations inférieures à 25 mg/l.
Seule l’unité de distribution de Saint Géry avait en 2002 une concentration moyenne en nitrates supérieure à 25 mg/l, mais le captage a depuis été abandonné. Sur les communes de Roannes-Sainte-Mary, Boisset et Vitrac les concentrations maximales en nitrates détectées sur les eaux distribuées avoisinent 27 à 29 mg/l mais la concentration moyenne est inférieure à 25 mg/l.

1.6.2 Les pesticides

Egalement appelés "phytosanitaires", les pesticides sont des produits chimiques organiques utilisés en agriculture, en horticulture, en sylviculture, mais également pour l’entretien des terrains et voiries publics ou privés. Leur présence dans l’eau provient d'une mauvaise maîtrise de ces produits utilisés pour désherber ou protéger les récoltes. Les pesticides les plus fréquemment retrouvés dans l'eau sont deux herbicides : l’atrazine et la simazine, bien que ces substances de la famille des triazines soient interdites à la commercialisation depuis 2003.

La connaissance de l'action à long terme des pesticides sur la santé humaine reste incomplète. Certains pesticides ont des effets ou sont suspectés avoir des effets sur la santé (cancers) lorsqu'ils sont consommés pendant de nombreuses années.
La concentration limite fixée pour les eaux destinées à la consommation humaine est de 0,5 µg/l pour les pesticides totaux et 0,1 µg/l pour l’atrazine ou la simazine.

Sur le bassin du Célé :
Les pesticides ne sont pas mesurés sur le Cantal. On peut néanmoins supposer, compte tenu des pratiques agricoles du département, que les concentrations en pesticides dans l’eau restent faibles. Dans le Lot, les mesures de Triazines sont fournies sur quatre UDI : Cajarc, Lissac et Mouret, Saint-Chels-Achat et Saint-Géry. Seule l’unité de Saint Géry présentait en 2002 une teneur en Triazines (0,11 µg/l) supérieure à la limite de qualité, sur les autres UDI les Triazines n’ont pas été détectés.
Des mesures ont été effectuées sur les captages de Gabanelle et de Prentegarde, respectivement depuis 2004 et 2005. Sur ces deux captages, les concentrations en atrazine et simazine sont inférieures à la norme. Les résultats ne sont toutefois pas assez précis pour vérifier que la teneur en pesticides totaux est inférieure à la norme.

1.6.3 La qualité bactériologique

La qualité bactériologique d'une eau est évaluée lors des contrôles réglementaires, par la recherche de micro-organismes, principalement des germes témoins de contamination fécale. La présence de ces bactéries dans l'eau peut avoir pour origine une pollution de la ressource par des effluents domestiques, agricoles ou agro-alimentaires, un dysfonctionnement du traitement de potabilisation ou un entretien insuffisant des équipements de distribution.

Les conséquences de la consommation d'une eau contaminée dépendent de plusieurs facteurs dont l'état général du consommateur, la virulence des germes, ainsi que la dose ingérée. Les troubles sont principalement des troubles gastro-intestinaux, diarrhées, vomissements. Pour autant, le risque microbiologique ne doit pas être sous-estimé.

L'eau destinée à la consommation humaine ne doit pas contenir de germes pathogènes et de germes témoins de contamination fécale. Les concentrations maximales admises sont : 0 germe/100 ml pour Escherichia coli, Pseudomonas aeruginosa, les entérocoques coliformes thermotolérants, les streptocoques fécaux et les coliformes totaux (dans 95 % des analyses) et 1 germe/100 ml pour les bactéries sulfo-réductrices.

Sur le bassin du Célé :

Dans le Lot quatre UDI (sur 35) distribuent une eau périodiquement ou fréquemment contaminée d’un point de vue bactériologique.

Dans le Cantal les contaminations bactériologiques sont beaucoup plus fréquentes puisque 13 exploitants sur 24, soit 54 %, distribuent une eau périodiquement ou fréquemment contaminée (cf. tableau ci-dessous).

<table>
<thead>
<tr>
<th>Département</th>
<th>Contamination périodique (10 à 20 % de prélèvements non-conformes)</th>
<th>Contamination fréquente (20 à 45 % de prélèvements non-conformes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- UDI de Gorses</td>
<td></td>
<td>- UDI de Camburat - Planioles</td>
</tr>
<tr>
<td>- Le Bouyssou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lissac et Mouret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Boisset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Calvinet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Cassaniouze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Léynhac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Marcéolès</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Mourjou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Quézac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Roannes-Ste-Mary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Vitrac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Camping de Coursavy (Cassaniouze)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Fournoulès</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Lacapelle-del-Fraisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Commune de Saint-Antoine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 40 : Exploitants de captage AEP distibuant une eau périodiquement ou fréquemment contaminée

1.6.4 Autres paramètres

- **pH** :
 Le pH est un paramètre important car il agit sur l’efficacité des procédés de traitement ainsi que sur les phénomènes d’entartrage ou de corrosion des canalisations. Il n’y a pas de normes concernant le pH mais pour une utilisation optimale celui-ci doit se situer entre 6,5 et 9.

 Sur le bassin du Célé :
 - **Dans le Lot**, les eaux brutes captées ont des pH compris entre 7 et 7,5 et le pH moyen des eaux distribuées est de 7,4 Unités pH, sans différence importante entre les Causses (pH moyen de 7,5) et le Limargue et le Ségala (pH moyen de 7,3). Il n’existe aucun problème d’acidité ou de bascuité excessives, excepté à Gorses où l’eau est acide (5,6). Sur l’UDI du Tolerme (hors bassin versant mais fournissant certains villages du bassin), le pH atteint 8,1, c’est le point le plus élevé.
 - **Dans le Cantal**, le pH moyen est de 6,8. 8 UDI sur 23 ont un pH inférieur à 6,5. Cette acidité peut provoquer une corrosion des canalisations qui elle-même peut générer une augmentation de la turbidité.

- **La turbidité** :
 La turbidité est due à la présence de matières en suspension finement divisées (argiles, limons, matières organiques).
 La turbidité ne présente pas de risque sanitaire direct mais lorsqu’elle est élevée, peut diminuer l'efficacité des traitements de désinfection et générer des risques microbiologiques. La valeur limite de turbidité qui était jusqu'au premier janvier 2004 de 2 NTU (Nephelometric Turbidity Unit) est abaissée depuis le premier janvier 2004 à 1 NTU en tête de distribution pour les eaux superficielles et karstiques, la valeur limite reste à 2 NTU pour les petites installations avec un débit inférieur à 1000 m3/j desservant moins de 5000 habitants (jusqu’au 25/12/2008).

 Sur le bassin du Célé :
 La turbidité moyenne ne dépassait en 2002 la norme de 2 NTU que sur l’UDI Causse Sud de Gramat, mais elle était supérieure à 1NTU sur 3 autres UDI : Fromagerie occitanes à St Mamet, Import Causse Sud de Gramat et Le Bouyssou. De plus les turbidité maximales sont parfois élevées : jusqu’à 5,8 NTU (SI de la Fontbelle) dans le Cantal et 9 dans le Lot (SI Causse Sud Gramat).

- **Le calcaire et la dureté (titre hydrotimétrique TH)**:
 La dureté témoigne du calcium et du magnésium présents naturellement dans l’eau. Ces deux éléments indispensables pour l’organisme ne présentent pas de danger pour la santé. La dureté se mesure en degrés français. Elle ne fait pas l'objet d'une norme.
La dureté idéale est comprise entre 15 et 25 degrés français. En dessous de 10 degrés français l'eau est douce. Elle peut facilement corroder les canalisations et amener une présence excessive des métaux provenant des canalisations (fer, plomb si l'habitation est raccordée par des canalisations en plomb). Au-dessus de 25 degrés français l'eau est dure : elle entartrera facilement les canalisations et augmentera les consommations de lessive.

Sur le bassin du Célé :
Seules 5 UDI du Lot sur 58 distribuent une eau dont la dureté est comprise dans la fourchette idéale. La dureté de la majorité des UDI du Lot est comprise entre 27,7 et 49,2.
Inversement, la dureté est inférieure à la limite conseillée sur l'ensemble des UDI du Cantal (dureté moyenne de 2,7 TH) et sur 8 UDI aux alentours de Figeac.

<table>
<thead>
<tr>
<th>Qualité des eaux distribuées : à retenir !</th>
</tr>
</thead>
<tbody>
<tr>
<td>La qualité de l'eau potable distribuée sur le bassin du Célé est globalement bonne pour les paramètres nitrates, pesticides et turbidité. Ceci cache toutefois quelques disparités avec notamment des concentrations anormalement élevées sur certains captages du Cantal (Vitrac, Roannes St Mary,...). La dureté et le pH sont faibles dans le Cantal et le Figeacois, ce qui entraîne des risques d'altération des canalisations, voire des risques microbiologiques (baisse de l'efficacité de la désinfection).</td>
</tr>
<tr>
<td>La qualité bactériologique n'est pas satisfaisante, en particulier dans le Cantal.</td>
</tr>
</tbody>
</table>

1.7 Protection et Sécurité de l’approvisionnement

1.7.1 Les périmètres de protection

Les périmètres de protection visent à protéger les abords immédiats de l'ouvrage de captage et son voisinage, ainsi qu'à interdire ou réglementer les activités qui pourraient nuire à la qualité des eaux captées. Ils sont définis après une étude hydrogéologique et prescrits par une Déclaration d'Utilité Publique (DUP). Une inscription aux hypothèques clôt la procédure et permet d’appliquer les réglementations et recommandations. Les périmètres comprennent trois zones dans lesquelles des contraintes plus ou moins fortes sont instituées pour éviter la dégradation de la ressource.

1.7.1.1 Le périmètre de protection immédiat

Ce premier périmètre a pour objet d'empêcher la dégradation des ouvrages de captage ou l'introduction directe de substances polluantes dans l'eau. Sa surface est donc très limitée : quelques centaines de mètres carrés (environ 30 mètres sur 30). Le terrain est acquis en pleine propriété par le maître d'ouvrage et est clôturé, sauf en cas d'impossibilité. Toutes les activités y sont interdites à l'exception de l'exploitation et l'entretien des équipements et des activités autorisées dans l'acte de la déclaration d'utilité publique.

1.7.1.2 Le périmètre de protection rapproché

Le périmètre de protection rapproché doit protéger efficacement le captage vis-à-vis de la migration souterraine ou superficielle de substances polluantes. Sa surface dépend des caractéristiques de
l'aquifère, des débits de pompage, de la vulnérabilité de la nappe. Peuvent être interdits ou réglementés toutes les activités, installations et dépôts susceptibles de nuire directement ou indirectement à la qualité des eaux (Code de la santé publique, art.L.20). Sont généralement interdits dans ce périmètre :
- les forages et puits autres que ceux nécessaires à l'extension du champ captant et à la surveillance de sa qualité ;
- l'exploitation des carrières à ciel ouvert, l'ouverture et le remblaiement d'excavations à ciel ouvert ;
- le dépôt d’ordures ménagères, immondices, détritus et produits radioactifs et de tous produits et matières susceptibles d’altérer la qualité des eaux ;
- l'installation de canalisations, réservoirs ou dépôts d'hydrocarbures liquides ou gazeux, de produits chimiques et d'eaux usées domestiques ou industrielles ;
- l'épandage ou l’infiltration des lisiers et d'eaux usées d'origine domestique ou industrielle.

Les terrains peuvent être acquis par voie d'expropriation en pleine propriété par le maître d'ouvrage, si l'acquisition est jugée indispensable à la protection des eaux captées (CE 13/12/1967). Une convention peut également être passée avec les propriétaires agricoles ou forestiers.

Dans ce périmètre, toutes les activités (rejets ou prélèvements) soumises à déclaration au titre de la loi sur l'eau, passent automatiquement en régime d’autorisation. (Décret n°93-743, art. 2)

1.7.1.3 Le périmètre de protection éloigné

Le dernier périmètre n'a pas de caractère obligatoire. Il renforce le précédent et peut couvrir une superficie très variable. Peuvent être réglementés les activités, dépôts ou installations qui, malgré l'éloignement du point de prélèvement et compte tenu de la nature des terrains, présentent un danger de pollution pour les eaux prélevées, par la nature et la quantité de produits polluants mis en jeu ou par l'étendue des surfaces qu’ils affectent.

1.7.1.4 La mise en œuvre de périmètres

Prévue par le décret-loi du 30 octobre 1935, mais non appliquée, la protection des captages n’est devenue obligatoire que par la loi du 16 décembre 1964 et la loi sur l’eau du 3 janvier 1992. Cette dernière a mis en place les périmètres de protection des captages d'eau potable et a fixé des délais quant à leur mise en place : les collectivités locales dont les captages d'eau ne bénéficient pas d’une protection naturelle efficace avaient, en principe, jusqu’au 3 janvier 1997 pour se mettre en conformité. La circulaire du 15 février 1993 du Ministère de l’Environnement précise les cas où la mise en place des périmètres de protection autour des captages s'impose. Il s'agit en particulier :
- des eaux de surface : cours d'eau, lacs et retenues ;
- des eaux souterraines : captage dans une nappe alluviale, terrains largement fissurés.

Les procédures de définition des périmètres de protection sont longues. Cette lourdeur fait que, sur l'ensemble du territoire national de nombreux captages ne disposent pas de périmètres de protection achevés. En l'an 2000, 40 % seulement des captages bénéficiaient d'un périmètre de protection effectif ou en cours de constitution.

Sur le bassin du Célé :

Sur l'ensemble des captages du bassin du Célé, 17 bénéficient d'un environnement très favorable (boisé), 37 d'un environnement moyennement favorable (rural) et 6 d'un environnement défavorable (urbain ou industriel) (sources : DDASS du Lot, MAGE du Cantal). Il n’y a pas de données sur 31 captages du Cantal.

43 captages bénéficient d’une DUP (dont seulement 5 dans le Lot), soit 47 %. Le taux de protection semblerait donc satisfaisant par rapport à la moyenne nationale. Toutefois, seulement 8 DUP (1 seul dans le Lot, à Bagnac) ont été rendues après 1992 et définissent des périmètres de protection. Les DUP plus anciennes ne répondent pas à la législation actuelle et nombre d’entre elles sont en cours de...
de révision (4 dans le Lot).

Des avis d’hydrogéologues ont été rendus récemment sur les captages d’alimentation de la ville de Figeac (captages en rivièrère de Prentegarde et Gabanelle) mais les contraintes proposées étant difficiles à mettre en œuvre sur le captage de Gabanelle, celui-ci a été abandonné.

1.7.2 Etat des unités de traitement, réseaux et ouvrages

La majorité des captages du bassin du Célé sont gérés par des communes (62 sur 69 dans le Cantal et 10 sur 22 dans le Lot). Cela se traduit souvent par des moyens humains et techniques limités, et d’importantes difficultés d’exploitation et d’entretien des équipements. Il en résulte que certaines UDI n’ont pas de dispositifs de traitement et sont peu entretenues, comme le montre le tableau 41 ci-dessous.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Nombre d’UDI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cantal</td>
</tr>
<tr>
<td>Absence de traitement</td>
<td>19 soit 50 %</td>
</tr>
<tr>
<td>Existence d’un traitement</td>
<td>19 soit 50 %</td>
</tr>
<tr>
<td>dont traitement simple au chlore</td>
<td>11</td>
</tr>
<tr>
<td>dont traitement complet</td>
<td>8</td>
</tr>
</tbody>
</table>

Tableau 41 : Les unités de traitement

Sources : SDAEP et CG Cantal (2005), DDASS du Lot (2006)

Bien que 50 % des UDI ne disposent pas de traitement dans le Cantal, le bassin du Célé présente un taux de traitement élevé par rapport à la moyenne départementale du Cantal. Ceci s’explique par l’exploitation de ressources superficielles qui nécessite obligatoirement un traitement.

L’état des ouvrages de 35 captages situés dans le Cantal est connu : 46 % sont dans un bon état et 54 % dans un état moyen à médiocre. Nous ne disposons pas d’information sur cette donnée dans le Lot.

Pour ce qui est du rendement des réseaux, dans le Lot les réseaux ont des rendements très faibles dans la vallée du Célé, faibles sur le reste du bassin en aval de Figeac et satisfaisant sur la partie en amont ou sur la ville de Figeac. On dispose d’informations précises pour les UDI gérées par la SAUR (données fournies par la SAUR, extraites des CRT 2005) : les chiffres confirment l’analyse faite ci-dessus. Les rendements seraient compris entre 49 % (à St Sulpice) et 71 % (à Montet et Bouxal), avec une moyenne de 59 %. Les rendements sont donc assez faibles, mais dans la moyenne des régions rurales (rarement supérieurs à 75 %).

Dans le département du Cantal, on dispose de très peu d’informations sur les rendements des réseaux. Le SDAEP du Cantal estime que la moitié du réseau a plus de trente ans et qu’il faudrait renouveler 50 % du réseau dans les trente années à venir.

Il serait utile d’envisager l’équipement en compteurs d’éléments de réseaux. L’Agence de l’Eau Adour - Garonne encourage dans son 9ème programme la pose de compteurs. Le rendement des réseaux est en effet une donnée importante pour la gestion quantitative de l’alimentation en eau potable. Dans les secteurs ruraux, lorsque le rendement des réseaux est inférieur à 50 %, comme c’est le cas sur certains secteurs du bassin, des mesures s’imposent. Les disfonctionnements peuvent être liés à la vétusté des réseaux mais aussi à un mauvais entretien. En plus des investissements nécessaires sur
certaines unités de distribution, des actions relatives à la gestion de l'alimentation devraient donc être envisagées.

Protection et sécurité de l'approvisionnement : à retenir !

Malgré l'existence de nombreuses DUP (1 captage sur deux environ), la délimitation des périmètres de protection, notamment sur les prises d'eau en rivières, et les aquifères karstiques très vulnérables est largement insuffisante.

Les rendements, trop peu connus, sont à dire d'experts médiocres et les interconnexions insuffisantes.

1.8 Perspectives pour l'alimentation en eau potable

Les SDAEP du Lot et du Cantal recommandent l'abandon des captages les plus vulnérables tout en maintenant un nombre de captages assez important pour assurer un approvisionnement suffisant. Le problème se pose notamment sur le Ségala où de nombreux captages sont vulnérables mais nécessaires à l'alimentation en eau de la région.

L'interconnexion entre UGE est aussi une solution proposée par les SDAEP du Lot et du Cantal, ceci permet d'utiliser les excédents de production de certaines UGE pour combler le déficit d'autres.

Suite à un état des lieux global des ressources et des besoins sur la Châtaigneraie, le programme Objectif Eau Pure propose l'exploitation de ressources souterraines inutilisées, le prélèvement d'eaux de surface (pour la commune de Saint Mamet) et le renforcement des actions intercommunales telles que les interconnexions (par exemple entre Vitrac et Saint Mamet) et la gestion groupée de la ressource. Ces propositions sont discutées à l'heure actuelle. L'établissement des périmètres de protection est bloqué, les maires ayant réagi vivement aux indemnisations des propriétaires et exploitants agricoles.

La ville de Figeac a missionné le cabinet Merlin pour qu'il étudie plusieurs solutions de sécurisation de l'alimentation en eau potable de la ville : réhabilitation des deux stations de traitement actuelles, raccordement au SIAEP du Ségala oriental, au Syndicat de Limargue ou à la commune de Capdenac. L'analyse technico-économique a permis d'affirmer que la sécurisation de l'alimentation en eau potable de la ville de Figeac par le raccordement à la commune de Capdenac représente la solution la plus favorable actuellement. Les auteurs précisent toutefois que cette solution doit être validée par une étude hydrogéologique sur les capacités de l'aquifère utilisé. Les premiers éléments de cette étude tendent à confirmer la faisabilité technique d'une sécurisation de la ville via l'eau du Lot.

Le captage de Gabanelle a été abandonné récemment. L'interconnexion de Prentegarde avec l'UDI de Capdenac pour importer de l'eau venant du Lot devrait donc être mise en place prochainement.

L'interconnexion entre les SIAEP du Sud Ségala et du Ségala Oriental a été réalisée récemment. Enfin, un dernier projet prévoit un import d'eau en provenance de la Dordogne vers l'UDI de Camboulit. Il permettra également de sécuriser ou d'alimenter d'autres UDI (Zone artisanale de Cambes, SIAEP de Livernon, …).
Perspectives pour l’alimentation en eau potable : à retenir !

L’alimentation en eau potable est un enjeu majeur pour le SAGE du bassin du Célé. Cette problématique a, en effet, un impact direct sur l’ensemble de la population du bassin.

Globalement, la quantité de la ressource est suffisante en basse vallée du Célé (quantité et interconnexions avec la Bouriane), plus problématique sur le Figeacois (apport d’eau programmé depuis la Dordogne et le Lot) et insuffisante (en période sèche ou à l’horizon 2015) sur les captages en rivières et en sources du Ségala et de la Châtaigneraie, car très dépendante des précipitations.

L’eau distribuée connaît une contamination bactériologique qualifiable de chronique dans de nombreux captages du Cantal.

Le suivi qualité des captages est jugé insuffisant (absence de données ou fréquence insuffisante), notamment pour les concentrations en pesticides.

Des investissements semblent indispensables pour améliorer les rendements des réseaux et la qualité de l’eau distribuée : mise en place de périmètres de protection, amélioration des dispositifs de traitements, réhabilitation du réseau… Ils devront s’accompagner d’un travail important sur la gestion de l’alimentation (organisation des structures d’exploitation notamment).

2 Assainissement collectif et autonome

2.1 Le contexte

Les eaux usées domestiques sont les eaux en provenance d'habitations, permanentes ou temporaires, et produites par l'activité domestique. Il s'agit des eaux vannes, provenant des WC et des eaux ménagères constituées des eaux de cuisine et de lavage.

Les eaux usées domestiques doivent être traitées avant rejet au milieu, ce traitement constitue l'assainissement. Deux types d'assainissement peuvent être distingués :

- l'assainissement collectif permet la collecte dans un réseau des eaux usées d'une partie ou de la totalité de la population agglomérée, et leur traitement dans une station d'épuration.

- l'assainissement autonome (ou non collectif) doit assurer la collecte et le traitement des eaux usées domestiques des habitations non raccordées au réseau public d'assainissement grâce à des systèmes individuels.

La loi sur l'eau du 3 janvier 1992 imposait aux communes de réaliser un Schéma Communal d'Assainissement (SCA), définissant les zones relevant d'un assainissement collectif et celles relevant d'un assainissement autonome avant le 31 décembre 2005.

Assainissement non collectif :
Cette date correspondait également à l'obligation pour les communes de se doter d'un Service Public d'Assainissement Non Collectif (SPANC). Les SPANC sont chargés d'assurer le contrôle des systèmes non collectifs, à savoir :

- Contrôle de la conception, de l'implantation et de la bonne exécution des travaux de création de nouvelles installations.

- Contrôle de l'entretien et du bon fonctionnement des installations neuves puis anciennes.

Assainissement collectif :
L'article 35 du décret du 3 juin 1994 précise que les communes doivent obligatoirement prendre en charge les dépenses relatives aux systèmes d'assainissement collectif (station d'épuration, élimination des boues). En outre, le maire est responsable de l'approvisionnement en eau comme de l'épuration des eaux usées de sa commune.

Le décret du 3 juin 1994 crée une obligation générale de collecte et traitement des eaux usées dans les agglomérations de plus de 2000 "équivalents habitants". La date limite de réalisation de ces travaux a été fixée au 31 décembre 2005 (article 9 du décret n°94-469).

Sur le bassin du Célé :
Le tableau en annexe 6 présente les systèmes d'assainissement en place sur chaque commune du bassin du Célé et leurs principales caractéristiques.

2.2 Assainissement collectif

2.2.1 Part de l'assainissement collectif

Selon les données en notre possession, sur les 101 communes du bassin versant 56 possèdent un système d'assainissement collectif, mais seulement 40 STEP sont situées sur le bassin. Environ 50 % de la population serait raccordée. Cette valeur est une valeur estimative calculée à partir du nombre

Sources :
Fiches SATESE du Lot et MAGE du Cantal, 2004
Schémas Communaux d'Assainissement
d’abonnés par commune et d’un nombre moyen d’occupant par foyer\footnote{Le nombre moyen d’habitant retenu par foyer est de 2,4.}. Le nombre moyen d’abonnés par station est de 245. Ce chiffre masque l’écart entre des grosses stations comme Figeac (plus de 5000 abonnés) ou Maurs (plus de 900) et la majorité des stations du territoire qui comptent moins de 100 abonnés.

La station du lycée agricole de Figeac rejette également ses eaux traitées hors du bassin versant du Célé.

2.2.2 Caractéristiques des ouvrages d’épuration

Les données des 40 STEP situées sur le bassin versant sont disponibles, ce sont les stations suivies par le Service Technique à l’Épuration et au Suivi des Eaux (SATESE), la Mission d’Assistance à la Gestion de l’Eau (MAGE) ou en cours de construction (carte 21). Les fiches de suivi des stations d’épuration ne sont pas homogènes entre le Lot et le Cantal. Ainsi le nombre de raccordés n’est pas fourni sur les fiches de la MAGE (données extraites du SCA). Les informations sur les rendements épuratoires et les charges produites ne sont pas non plus disponibles pour toutes les stations.

Pour les stations en cours de construction ou récemment achevées (Fournoules, Marcolès, Saint Constant) les paramètres théoriques de la nouvelle station ont été pris en compte. Les informations en notre possession sont rassemblées sous forme de tableau en \ref{annexe6}.

2.2.2.1 Types de traitement

Les différents types de traitement rencontrés sur le bassin versant sont présentés dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Type de traitement</th>
<th>Nombre de station</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagunage</td>
<td>13</td>
<td>33 %</td>
</tr>
<tr>
<td>Boues activées</td>
<td>9</td>
<td>22 %</td>
</tr>
<tr>
<td>Lit bactérien</td>
<td>3</td>
<td>8 %</td>
</tr>
<tr>
<td>Filtre (à sable, roseaux ou compact)</td>
<td>9</td>
<td>22 %</td>
</tr>
<tr>
<td>Épandage souterrain / Lit d'infiltration</td>
<td>4</td>
<td>10 %</td>
</tr>
<tr>
<td>Bio Disques</td>
<td>2</td>
<td>5 %</td>
</tr>
</tbody>
</table>

Tableau 42 : Type de traitement des stations d’épuration du bassin

Les traitement de type lagunage et boues activées sont les plus utilisés. Globalement les traitements par boues activées se retrouvent plus sur le Cantal et le lagunage sur le Lot. L’emploi de stations à boues activées correspond notamment à une période où cette filière était fortement utilisée, y compris dans des bourgs de petite taille (cas du Cantal). Ces petites unités se sont avérées peu performantes. Le lagunage a également été fortement employé mais tend à être moins utilisé du fait notamment de son rendement épuratoire et de la place qu’il nécessite.

Compte tenu des évolutions dans les techniques d’assainissement, la filière « filtre planté de macrophytes » semble aujourd’hui se développer fortement sur le territoire (stations en cours de création : St Constant, Vitrac, Camboulit...). Elle présente de nombreux avantages : coût d’installation souvent moins onéreux qu’une filière type boue activée, bon rendement épuratoire, coût d’entretien réduit, emprise correcte et impact visuel plutôt bon.
2.2.2.2 Taille des stations

La taille des stations correspond à leur capacité nominale définie par la charge théorique normale pour laquelle la station a été dimensionnée. Elle est généralement exprimée en Équivalents-Habitants (EH).

<table>
<thead>
<tr>
<th>Taille</th>
<th>Nombre de stations</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1000 EH</td>
<td>4</td>
<td>10 %</td>
</tr>
<tr>
<td>500-1000 EH</td>
<td>7</td>
<td>17 %</td>
</tr>
<tr>
<td>200-500 EH</td>
<td>14</td>
<td>35 %</td>
</tr>
<tr>
<td>< 200 EH</td>
<td>12</td>
<td>30 %</td>
</tr>
<tr>
<td>Inconnu</td>
<td>3</td>
<td>8 %</td>
</tr>
</tbody>
</table>

Tableau 43 : Taille des unités d'assainissement

Dix communes ont une station dont la capacité de traitement atteint ou dépasse 500 EH, il s’agit d’Assier (500 EH), Latronquière (650 EH), Bagnac-sur-Célé (1 000 EH), Figeac (16 000 EH), Boisset (600 EH), Calvinet « Bourg » (660 EH), Le Rouget « Guizalmont » (2 400 EH), Maurs (5 930 EH), Saint Mamet la Salvetat (1000 EH) et Marcoles (600 EH prévus).

La grande majorité des unités de traitement est représentée par de petites stations (< 500 eq/hab).

2.2.2.3 Etat des ouvrages (station et réseau)

Le bilan des travaux réalisés ou prévus sur les stations d’épuration et les réseaux d’assainissement du territoire figure sur la carte 22.

- **Etat des stations**

Sur le bassin du Célé, presque la moitié des installations d’épuration ont plus de 20 ans. Ces stations présentent généralement des problèmes
 - de dilution, due à des intrusions d’eaux parasites (le plus souvent d’origine pluviale) ;
 - de capacité nominale insuffisante au regard des populations raccordées ;
 - ou à l’inverse, de surdimensionnement (capacité nominale nettement supérieure à la population raccordée).

Sur les 12 stations pour lesquelles le rapport capacité hydraulique nominale/volume journalier d’effluents traités est fourni, 5 sont en surcharge hydraulique. Il s’agit des stations d’Assier, Bagnac, Leynhac, Maurs et le Rouget. Pratiquement une station sur deux s’avère en surcharge hydraulique.

En outre, les stations de type lagunage naturel rencontrent toutes un problème d’eutrophisation (par prolifération d’algues dans le bassin) plus ou moins fréquent, ainsi que des problèmes d’imperméabilisation ou de présence de ragondins.

Les rendements d’épuration pour la DBO5 sont compris entre 54 (station de Maurs) et 99 %, si l’on exclut les stations dont le traitement est obsolète. Les plus mauvais rendements d’épuration concernent l’azote.

Nombre de disfonctionnements pourraient être évités par un meilleur entretien des installations : nettoyage régulier du dégrilleur, enlèvement plus fréquent des boues…

- **Etat des réseaux**

Les réseaux sont majoritairement séparatifs sur le Lot, tandis que sur le cantal les réseaux unitaires ou mixtes sont plus nombreux. Les réseaux connaissent des disfonctionnements classiques liés à :
 - des intrusions d’eaux claires parasites, provenant du rehaussement des nappes et du raccordement des eaux de pluies (avaloirs et chenaux de toitures) sur les réseaux ;
 - des mises en charge ponctuelles ;
 - des défauts d’étanchéité des regards (fuites), des pompes de relevage ;
 - des mauvais réglages de déversoirs d’orages.
Ces disfonctionnements sont souvent liés à une vétusté du réseau ou a un mauvais entretien de ce dernier (hydrocurages non réguliers…).

- **Les projets de construction/réhabilitation**

<table>
<thead>
<tr>
<th>Commune</th>
<th>Travaux réalisés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figeac</td>
<td>Réhabilitation réseau en 2005 et 2006</td>
</tr>
<tr>
<td>Fournoulès</td>
<td>Création réseau et STEP de 40 EH en 2006</td>
</tr>
<tr>
<td>Mauras</td>
<td>Réhabilitation de la STEP en 2005.</td>
</tr>
<tr>
<td>Cabrerets</td>
<td>Création réseau et STEP de 500 EH en 2005.</td>
</tr>
<tr>
<td>Cambes</td>
<td>Création réseau et STEP de 350 EH en 2005.</td>
</tr>
<tr>
<td>Corn</td>
<td>Création réseau et STEP de 138 EH en 2005.</td>
</tr>
<tr>
<td>Grèzes</td>
<td>Création réseau et STEP de 150 EH en 2002.</td>
</tr>
<tr>
<td>Livernon</td>
<td>Création réseau et STEP de 400 EH en 2001.</td>
</tr>
<tr>
<td>Marcillac sur Célé</td>
<td>Réhabilitation de la lagune.</td>
</tr>
<tr>
<td>Montredon</td>
<td>Création réseau et STEP en 2002.</td>
</tr>
</tbody>
</table>

Tableau 44 : Travaux d’assainissement collectif réalisés entre 2000 et 2006

<table>
<thead>
<tr>
<th>Commune</th>
<th>Travaux programmés ou en cours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassaniouze</td>
<td>Réhabilitation réseau.</td>
</tr>
<tr>
<td>Cayrols</td>
<td>Réhabilitation réseau.</td>
</tr>
<tr>
<td>Mauras</td>
<td>Réhabilitation réseau.</td>
</tr>
<tr>
<td>Roumégoux</td>
<td>Réhabilitation réseau et STEP.</td>
</tr>
<tr>
<td>Saint Constant</td>
<td>Réhabilitation réseau et STEP.</td>
</tr>
<tr>
<td>Vitrac</td>
<td>Création réseau et STEP.</td>
</tr>
<tr>
<td>Bagnac sur Célé</td>
<td>Réhabilitation réseau.</td>
</tr>
<tr>
<td>Béduer</td>
<td>Raccordement du camping.</td>
</tr>
<tr>
<td>Boussac</td>
<td>Réhabilitation de la lagune et du réseau.</td>
</tr>
<tr>
<td>Camboulit</td>
<td>Création réseau et STEP.</td>
</tr>
<tr>
<td>Espagnac</td>
<td>Création réseau et STEP.</td>
</tr>
<tr>
<td>Figeac</td>
<td>Réhabilitation réseau et STEP.</td>
</tr>
<tr>
<td>Lissac et Mouret</td>
<td>Création réseau et STEP.</td>
</tr>
<tr>
<td>Prendeignes</td>
<td>Création réseau et STEP.</td>
</tr>
<tr>
<td>Saint-Maurice en Quercy</td>
<td>Création réseau et STEP.</td>
</tr>
<tr>
<td>Saint Perdoux</td>
<td>Création réseau et STEP.</td>
</tr>
</tbody>
</table>

Tableau 45 : Travaux d’assainissement collectif prévus pour 2007-2008

Plus d’un quart des communes du bassin auront donc réalisé des travaux d’assainissement collectif en 8 ans.
2.2.3 La pollution domestique collective

Les données prises en compte pour les calculs suivants sont les charges en entrée des 40 STEP situées sur le bassin versant du Célé. En effet si la STEP est située à l’extérieur du bassin versant, la population raccordée rejette ses eaux usées à l’extérieur du territoire. Elle n’est pas comptabilisée dans les charges brutes ou nettes.

- Charges brutes (en entrée des STEP)

Les charges brutes des rejets domestiques assainis collectivement sont évaluées à partir du nombre d’Équivalent - Habitants raccordés aux stations d’épuration et des valeurs journalières moyennes de charges par habitant : 60 g de DBO5, 120 g de DCO, 90 g de MES et 15 g de NTK (norme législative).

Remarque : La quantité de pollution journalière théorique rejetée par un habitant rural a été évaluée par le CEMAGREF à 33 g de DBO5, 76g de DCO, 33g de MES et 8 g de NTK. Bien que la plus grande partie de la population du bassin du Célé soit rurale nous avons pris le parti de raisonner avec les charges maximales pour ne pas sous évaluer la charge organique due au rejets domestiques.

Près de 23 800 EH sont raccordés sur les 40 STEP qui rejettent sur le bassin du Célé, ils représentent les charges brutes suivantes :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>DBO5</th>
<th>DCO</th>
<th>MES</th>
<th>NTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charges brutes en entrée des stations en Kg/jour</td>
<td>1 427</td>
<td>2 854</td>
<td>2 141</td>
<td>357</td>
</tr>
</tbody>
</table>

Tableau 46 : Estimation des charges brutes traitées en assainissement collectif

Les graphiques suivants présentent les charges brutes totales par sous bassin, ou ramenées à leur surface. Il s’agit de la charge intrinsèque liée aux rejets domestiques reliés à des systèmes d’assainissement collectif sur le territoire sans cumul avec le bruit de fond existant éventuellement auparavant dans la rivière (charge déjà présente dans la rivière à l’amont du sous bassin Célé-St Perdoux ou Rance – Arcambe par exemple).

Les charges brutes totales les plus importantes sont apportées sur les sous bassins Célé-Saint Perdoux, Rance-Arcambe, et Moulègre, respectivement du fait des populations raccordées des villes de Figeac, Maurs et le Rouget.
Sur le sous bassin « basse vallée du Célé », les résultats s’expliquent par la taille du sous bassin qui regroupe de nombreux bourgs de taille réduite mais dont les charges brutes une fois cumulées s’avèrent importantes. La figure 20 ci-dessous permet de s’affranchir des problèmes de taille des bassins versants en raisonnant à l’hectare.

![Figure 16 : Charges brutes annuelles traitées en assainissement collectif par hectare](image)

Le sous bassin Célé-St Perdoux ressort nettement comme celui recevant la charge brute la plus importante. Ceci s’explique par le fait qu’il comprend la ville de Figeac, dont la station reçoit les effluents d’environ 13 000 Equivalent - Habitants. Les sous bassin Rance-Arcambe et Moulègre reçoivent des charges brutes conséquentes, même si elles s’avèrent 4 fois moins importantes que sur le sous bassin Célé Saint Perdoux. Le sous bassin Célé-Aujou (village de Bagnac) ressort également du lot alors que le sous bassin basse vallée du Célé ne ressort plus (sa grande surface atténue les charges brutes apportées à l’hectare).

- Charges nettes (en sortie des STEP)
 - 1ère simulation : par temps sec

La pollution engendrée est évaluée à partir des concentrations moyennes des effluents traités et de la charge hydraulique de la station, le jour du contrôle. Dans le cas où la charge hydraulique n’était pas mesurée, une charge hydraulique théorique a été calculée à partir du nombre de raccordés et d’une consommation moyenne de 150, 125 ou 100 litres d’eau par habitant et par jour (soit 120, 100 ou 80 m³ par an). De même pour les stations où la concentration des effluents en sortie n’était pas donnée elle a été estimée à partir du calcul suivant : population raccordée x charge journalière par habitant × rendement théorique de la station.

Les données nécessaires au calcul manquent pour certaines stations. Les chiffres donnés ci-dessous sont donc probablement légèrement inférieurs à la pollution réelle.

<table>
<thead>
<tr>
<th>Consommation journalière par habitant prise en compte</th>
<th>Charge totale en sortie des stations en kg/jour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DBO5</td>
</tr>
<tr>
<td>150 L/jour</td>
<td>59</td>
</tr>
<tr>
<td>125 L/jour</td>
<td>56</td>
</tr>
<tr>
<td>100 L/jour</td>
<td>54</td>
</tr>
</tbody>
</table>

Tableau 47 : Estimation des charges nettes issues de l’assainissement collectif par temps sec
Les calculs suivants ont été faits sur la base d'une consommation moyenne de 150 L/jour. Cette quantité est sûrement surévaluée en secteur rural mais elle permet un chiffrage de pollution maximale.
Les figures 21 et 22 présentent la charge polluante nette totale estimée par temps sec, par sous bassin ou par hectare.

Figure 17 : Charges nettes journalières issues de l'assainissement collectif par temps sec par sous bassin

Figure 18 : Charges nettes annuelles issues de l'assainissement collectif par temps sec par hectare

On constate que les deux sous bassins avec les charges nettes à l'hectare dues à l'assainissement collectif les plus importantes sont Célé-St Perdoux dans lequel se situe la ville de Figeac et Moulègre.
où les villes du Rouget, de St Mamet le Salvetat et de Boisset apportent une charge moindre mais qui cumulée devient conséquente. Comme pour la charge brute le sous bassin de la basse vallée du Célé ressort lorsque l'on compare les charges total mais une fois la charge ramenée à la surface elle est parmi les plus faible.

Les premiers résultats d'autocontrôle de la STEP de Maurs sont à ce jour disponibles, ils ont donc été utilisés dans cette simulation en lieu et place des données théoriques du projet antérieurement utilisées. Cette rectification a fortement diminué la charge du sous bassin Rance-Arcambe qui s'approche de la valeur moyenne sur le bassin versant.

- **2ème simulation : par temps de pluie**

Dans les réseaux unitaires ou mixtes, par temps de forte pluie, une partie des effluents bruts est rejetée au milieu sans aucun traitement, au niveau des déversoirs d'orage. Pour tenir compte de ces disfonctionnements nous proposons de considérer que la charge nette par temps de pluie pour les réseaux unitaires ou mixte est égale à 80 % de la charge brute. Pour les réseaux séparatifs, la charge nette reste la même que par temps sec (issue des mesures en sortie de STEP). La charge nette totale de l'assainissement collectif atteindrait alors 912 kg de DBO₅ par jour, soit 11 fois plus que par temps sec.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>DBO₅</th>
<th>DCO</th>
<th>MES</th>
<th>NTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge nette en Kg/jour</td>
<td>972</td>
<td>1986</td>
<td>1464</td>
<td>251</td>
</tr>
</tbody>
</table>

Tableau 48 : Estimation des charges nettes issues de l'assainissement collectif par temps de pluie

Les figures 23 et 24 présentent la charge polluante nette totale estimée par temps de pluie, par sous bassin ou par hectare.

Figure 19 : Charges nettes journalières issues de l'assainissement collectif par temps de pluie par sous bassin
Les charges nettes, par temps de pluie, sont beaucoup plus importantes que par temps sec. C’est sur le sous bassin Célé-St Perdoux que la charge est la plus importante, elle est dix à trente fois supérieure (selon le paramètre considéré) à la charge estimée par temps sec. Ce sous bassin ressort particulièrement à cause du réseau unitaire de la ville de Figeac qui apporte 68 % de la charge totale estimée pour le bassin versant du Célé. La réhabilitation du réseau de la ville est prévue de façon à stocker le premier flot d’orage pour des pluies de fréquence d’apparition supérieure ou égale à un mois. Ceci devrait permettre de réduire notablement la charge organique apportée au milieu par temps de pluie.

Le sous bassin Rance-Arcambe ressort plus que par temps sec, la ville de Maurs étant équipée d’un réseau mixte.

3ème simulation : sans la ville de Figeac

Dans les simulations précédentes, la STEP de Figeac apporte à elle seule 34 % de la charge en DBO5 par temps sec et 64 % par temps de pluie. Or elle sera réhabilitée en 2007 ou 2008, pour tenir compte de ces travaux nous proposons de calculer la charge sans la ville de Figeac.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>DBOS</th>
<th>DCO</th>
<th>MES</th>
<th>NTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge nette en Kg/jour</td>
<td>37</td>
<td>157</td>
<td>87</td>
<td>24</td>
</tr>
<tr>
<td>par temps sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge nette en Kg/jour</td>
<td>348</td>
<td>737</td>
<td>528</td>
<td>95</td>
</tr>
<tr>
<td>par temps de pluie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Si l’on retire les charges apportées par la ville de Figeac, la charge nette totale en DBO5 de l’assainissement collectif est nettement réduite.
2.2.4 Les raccordements d'industries

Les industries reliées au réseau collectif sont en général des petites entreprises agro-alimentaires (conserverie, charcuterie salaison, abattoirs, boucheries, laiteries), des garages, des hôtels, bars, restaurants, campings.

Les petites entreprises doivent avoir nécesairement un prétraitement adapté à leur activité avant de rejeter leurs eaux usées dans le dispositif d'assainissement. Sur le bassin du Célé, très peu d'entreprises raccordées possèdent un prétraitement (données SCA). La majorité des restaurants/bars ne possèdent pas de bac dégraissseur, les boucheries en sont parfois équipées. Plusieurs garages raccordés ne possède pas de bac séparateur d'hydrocarbures (Boisset, Calvinet).

Quatre stations d'épuration communales reçoivent des effluents industriels conséquents :

- **Figeac** : raccordement des eaux vannes de deux industries mécaniques et traitement de surface, des effluents d’activité d’une industrie agroalimentaire et de deux structures à activité de services ;
- **Maurs** : raccordement de deux industries agroalimentaires dont une confiturerie et une salaison ;
- **Parlan** : raccordement d’une industrie agroalimentaire (charcuterie salaison).
- **Le Rouget** : raccordement d’une entreprise agroalimentaire (charcuterie salaison).

Une convention de raccordement existe entre la commune de Parlan et l'entreprise Laborie (charcuterie/ salaison industrielle). La ville de Figeac a signé des conventions avec les 8 entreprises suivantes (source : ville de Figeac) :
- Entreprise Chausson : rejets des effluents en provenance de l'entreprise ;
- Etablissement SA Reveillac : rejets des effluents du garage automobile ;
- SYDED : déversement des lixivias du CET de Nayrac (dépotage à la STEP) ;
- SA SOFIDIS : rejet des effluents du magasin Champion ;
- SCI les Eaux Vives : rejet des effluents de la clinique vétérinaire ;
- Bar-brasserie "La Monnaie" : rejet des effluents de l'établissement ;
- SCI le Moulin : rejet des effluents du restaurant ;
- SA FIGEAC AERO : rejet des effluents de l'établissement.

L’absence de systèmes de pré-traitement des effluents engendre des disfonctionnements importants dans les STEP du bassin (afflux d’effluents, nature des effluents à traiter qui change, Exemple = surconcentration en graisses…) et provoque des surcoûts d’entretien des réseaux (hydrocurages pour supprimer des bouchons de graisses…). Les stations de Maurs, Figeac et du Rouget pâtissent notamment de ces manques.

Les conventions de rejets constituent un accord entre la collectivité qui accepte d’assurer le traitement d’effluents industriels en contrepartie de quoi l’industriel participe au coût d’assainissement et s’engage à respecter une qualité et une quantité de rejets définis. Les conventions comprennent des analyses effectuées en autocontrôle et d’autres réalisées par un organisme extérieur. Des valeurs seuils à ne pas dépasser sont fixées pour les paramètres physico-chimiques caractérisant au mieux l’activité industrielle.

Les conventions permettent de mieux connaître la nature, la quantité et les variations journalières et hebdomadaires de production des effluents, données qui s’avèrent très utiles au gestionnaire pour bien entretenir ses dispositifs d’assainissement collectif et programmer d’éventuels travaux de mise en adéquation avec l’évolution de l’activité industrielle.

Leur rareté sur le bassin constitue une lacune importante.
Assainissement collectif : à retenir !

Les rejets liés à l’assainissement collectif sont essentiellement concentrés sur les deux sous bassins où sont situées les villes principales (Figeac et Maurs). Il s’agit de Célé-St Perdoux et Rance-Arcambe.

De nombreuses collectivités réalisent actuellement ou ont programmé des travaux importants d’amélioration ou de création de leurs systèmes d’assainissement collectifs. Eu égard à ces démarches, on peut penser que l’impact des rejets collectifs va s’atténuer et, si l’entretien des dispositifs est assuré, risque de devenir négligeable à l’horizon 2008 à comparer aux autres rejets (assainissement autonome et rejets agricoles).

2.3 Assainissement autonome

2.3.1 Les systèmes d’assainissement autonome

L’importance de l’habitat dispersé sur le territoire explique que l’assainissement autonome prédomine. Les petites communes choisissent généralement la voie du “tout autonome” à cause de l’éclatement des bourgs (habitations éloignées les unes des autres même dans certains bourgs) et pour éviter des frais d’investissement puis d’entretien trop importants. Lorsque qu’une station d’épuration est malgré tout réalisée, elle ne traite souvent que les effluents stricts du bourg.

Les différentes études nationales et locales (SCA réalisés sur le territoire) concluent que sur l’ensemble des systèmes d’assainissement individuels existants, seuls 20 % d’entre eux sont en moyenne conformes (conformes à la réglementation en vigueur et performants). 10 à 20 % d’habitations sont dépourvues de systèmes ou possèdent des systèmes complètement inefficaces (donc assimilables à des rejets directs). Les 60 % restant constituent des habitations qui présentent des dispositifs de traitement incomplets et donc un risque de rejet plus ou moins fort.

Sur la base de ces chiffres, du nombre de raccordés par commune et des charges théoriques par habitant on peut estimer la pollution engendrée sur le bassin du Célé par l’assainissement autonome.

2.3.2 La pollution domestique autonome

- Charge brute (en entrée des systèmes d’assainissement individuels)

La charge brute de l’assainissement autonome est évaluée à partir du nombre d’Equivalents Habitants non raccordés et des valeurs journalières moyennes de charge par habitant issues de la norme législative : 60 g de DBO5, 120 g de DCO, 90 g de MES et 15 de NTK. Ces ratios supérieurs aux rejets théoriques d’un habitant rural (33 g de DBO5, 76g de DCO, 33g de MES et 8g de NTK) permettent d’avoir une estimation maximale de la charge de l’assainissement autonome.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>DBO5</th>
<th>DCO</th>
<th>MES</th>
<th>NTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge brute en Kg/jour</td>
<td>1222</td>
<td>2096</td>
<td>1890</td>
<td>318</td>
</tr>
</tbody>
</table>

Tableau 50 : Estimation des charges brutes traitées en assainissement autonome

La charge brute totale issue des rejets des ménages non raccordés à un système de traitement collectif s’avère légèrement inférieure à celle apportée par les foyers raccordés.
Les figures 25 et 26 présentent la charge brute totale par sous bassin ou par hectare.

Figure 21 : Charges brutes journalières traitées en assainissement autonome par sous bassin

Deux sous bassins présentent une charge brute supérieure à la moyenne : basse vallée du Célé et Drauzou. Sur ces sous bassins, peu de villages sont dotés d’un système de traitement collectif, à l’exception des villages situés en bordure du Célé, mais étant donné que la superficie de ce sous bassin est très vaste (causses), le nombre de foyers non raccordés est important.

Figure 22 : Charges brutes annuelles traitées en assainissement autonome par hectare
Ramenées à la surface du chaque sous bassin, les plus fortes charges brutes concernent le Drauzou mais également le Célé Aujou, Célé Enguirande et Rance Arcambe. En dehors de ces quatre sous bassin les charges brutes des rejets domestiques traités en assainissement autonome pas hectare sont assez homogènes. La basse vallée du Célé ne présente plus de rejets bruts supérieurs à la moyenne quand les charges sont ramenées à la surface du sous bassin. A noter que les charges brutes vont diminuer en 2007 (notamment sur le sous bassin du Drauzou) car les communes d’Espagnac Ste-Eulalie, de Lissac et Mouret et de Vitrac vont construire des STEP (non prise en comptes dans nos calculs).

- **Charge nette (en sortie des systèmes d’assainissement individuels)**

L’évaluation des charges nettes apportées par l’assainissement non collectif est délicate. En effet, contrairement au STEP, tous les systèmes d’assainissement individuels ne peuvent être suivis régulièrement. Pour obtenir les charges nettes apportées par les rejets d’assainissement autonomes, des pourcentages moyens de performance ont été utilisés et 2 simulations ont été réalisées :

- **1ère simulation : par temps sec**
 - 25 % des systèmes sont considérés non conformes et non performants (assimilables à des rejets directs).
 - 75 % des systèmes sont considérés conformes ou non-conformes mais performants par temps sec.

Au total, 25 % de la population non raccordée présenterait des rejets assimilables à des rejets directs. Sur le bassin versant de Célé, la charge totale atteindrait 295 Kg de DBO5 par jour.

<table>
<thead>
<tr>
<th>paramètre</th>
<th>DBO5</th>
<th>DCO</th>
<th>MES</th>
<th>NTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge totale en sortie des systèmes individuels en kg/jour</td>
<td>295</td>
<td>504</td>
<td>454</td>
<td>76</td>
</tr>
</tbody>
</table>

Tableau 51 : Estimation des charges nettes issues de l’assainissement autonome (1ère simulation)

- **2ème simulation : par temps de pluie**
 - 50 % des systèmes sont considérés non-conformes et non performants (assimilables à des rejets directs).
 - 50 % des systèmes sont considérés conformes ou non-conformes mais performants par temps sec comme par temps de pluie.

Au total, 50 % de la population non raccordée présenterait des rejets assimilables à des rejets directs. Sur le bassin versant de Célé, la charge totale atteindrait 591 Kg de DBO5 par jour.

<table>
<thead>
<tr>
<th>paramètre</th>
<th>DBO5</th>
<th>DCO</th>
<th>MES</th>
<th>NTK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge totale en sortie des systèmes individuels en kg/jour</td>
<td>591</td>
<td>1007</td>
<td>908</td>
<td>153</td>
</tr>
</tbody>
</table>

Tableau 52 : Estimation des charges nettes issues de l’assainissement autonome (2ème simulation)

Les figures 27 et 28 présentent la charge polluante nette totale estimée par sous bassin ou par hectare. Comme pour les graphiques de la partie assainissement collectif, ils ne prennent pas en compte le bruit de fond existant éventuellement auparavant dans la rivière. Ils ont été réalisés à partir de la simulation par temps sec, les valeurs étant simplement multipliées par deux pour la simulation par temps de pluie.
Figure 23 : Charges nettes journalières issues de l’assainissement autonome par temps sec par sous bassin

Le sous bassin Basse vallée du Célé est celui où la charge journalière apportée par l’assainissement autonome est la plus forte. Compte tenu de sa surface, cette charge élevée est logique.

Figure 24 : Charges nettes annuelles issues de l’assainissement autonome par temps sec par ha

Les sous bassins Drauzou, Célé-Aujou, Célé Enguirande et Rance-Arcambe reçoivent les charges par hectare les plus fortes. Ce sont des sous bassins où le nombre de foyers raccordés à une station d’épuration est faible, à l’exception du sous bassin Rance – Arcambe (STEP de Maurs, …). Ceci explique la forte pression de l’assainissement autonome.
2.3.3 Les contrôles des systèmes d’assainissement autonome

Sur le bassin du Célé, la majorité des communes (environ 95 %) ont réalisé leurs Schémas Communaux d’Assainissement (SCA) et des Services Publics d’Assainissement Non Collectifs (SPANC) sont en place sur l’intégralité de la partie lotoise du bassin et sur une communauté de communes de la partie cantalienne (voir carte 23).

Dans le Lot, les structures ayant mis en place un SPANC ou assurant une prestation de service sont :

- la communauté de communes de Figeac - Cajarc ;
- le Parc naturel régional des Causses du Quercy ;
- la communauté de communes Lot - Célé ;
- la communauté de commune du Haut Ségala ;
- la communauté de communes Causses - Ségala - Limargue ;
- l’Association pour l’Aménagement de la Vallée du Lot pour les communes suivantes : Bagnac, Capdenac le Haut, Labastide du Haut Mont, Gorses et Saint Perdoux.

Dans le Cantal, seule la communauté de communes Cère et Rance en Châtaigneraie a créé un SPANC.

A ce jour, les SPANC effectuent les contrôles de conception et de travaux d’installation des projets réalisés dans le cadre de permis de construire ou de déclarations de travaux. Seuls les services du département du Lot ont lancé les contrôles périodiques des installations existantes qui doivent être effectués au minimum tous les 8 ans (la loi sur l’eau de 1992 imposait un contrôle "environ tous les 4 ans", la nouvelle loi sur l’eau précise que la périodicité de contrôle ne peut excéder 8 ans).

2.3.4 Les opérations groupées de réhabilitation de l’Assainissement Non Collectif

Ces opérations, auxquelles adhèrent les habitants volontaires (près de 100 habitations ont intégré la démarche sur les 3 communes), permettent d’effectuer un état des lieux de chaque dispositif d’assainissement, de proposer des travaux, d’en faire les croquis et d’en estimer le coût. Cette première étape terminée, les habitants, dont les systèmes existants comportent un risque de pollution ou pour la salubrité publique, sont invités à les réhabiliter. Pilotées par les communes, ces opérations peuvent (sous certaines conditions) être subventionnées par l’Agence de l’Eau Adour Garonne. Les habitations éligibles aux financements de l’AEAG sont celles qui engendrent un risque de pollution ou un problème de salubrité publique.

Le lancement d’opérations similaires sur certaines communes (Figeac - secteurs de Ceint d’eau et de Prentegarde amont, Fourmagnac, Bagnac …) permettrait de régler des situations conflictuelles et de supprimer des rejets problématiques.
Assainissement autonome : à retenir !

Le caractère rural du bassin versant du Célé, avec des habitations éparèes explique que la charge brute en matières organiques traitée au moyen de systèmes d’assainissement non collectif est proche de celle liée aux rejets bruts raccordés aux assainissements collectifs.

Si l’on exclut les villes de Figeac et de Maurs, la pollution brute traitée en assainissement non collectif s’avère beaucoup plus importante (cf. figure 29).

Des efforts importants seront donc à réaliser dans les années à venir pour réduire les risques de pollution liés au traitement des eaux usées des habitations non raccordées. Cette action s’avère délicate du fait du nombre important de foyers concernés.

La mise en place des SPANC et le contrôle progressif des installations existantes devrait permettre un renouvellement conséquent du "parc" dans les 10 prochaines années. De nouvelles opérations groupées de réhabilitation de l’assainissement non collectif pourraient s’envisager pour accélérer cette "mise aux normes".

2.4 La gestion des boues

La plupart des communes possédant un système d’assainissement par boues activées écoule les boues produites par valorisation agricole. Cinq communes ont défini leur plan d’épandage : Cayrois, Parlan, Roumégoux, le Rouget et Figeac.

Figeac l’a mis en place. L’épandage des boues de la station s’effectue sur des parcelles d’exploitants agricoles volontaires situées sur la commune de Figeac et les communes environnantes. La Chambre d’Agriculture effectue une analyse des boues et des sols susceptibles de les accueillir avant épandage. Ces derniers mois, la teneur des boues de la STEP de Figeac en métaux lourds n’a pas permis un épandage sur terrain agricole. Les boues ont été évacuées en décharge contrôlée.

Les communes qui n’ont pas de plan d’épandage gèrent ponctuellement leurs boues, au moment de la vidange.

La commune de Maurs connaît des difficultés de gestion de ses boues. Depuis 2006, elle exporte ses boues sur une plateforme de compostage située à Alassac (Corrèze). Cette formule semble pouvoir être pérennisée.

L’augmentation de la fréquence de vidange des fosses toutes eaux et des fosses sceptiques liée au développement des contrôles de l’existant, va se heurter très rapidement au problème du traitement des matières de vidange, qui à ce jour ne peut être assuré convenablement sur le territoire. En effet, sur le bassin du Célé, seules les stations d’épuration de Figeac et de Cajarc sont équipées pour recevoir et traiter les boues ou matières de vidanges.
La gestion des boues : à retenir !

Sur le bassin du Célé 5 communes ont défini leur plan d'épandage, ils sont en cours d'élaborations sur 5 autres communes. A partir de 2008 les aides de l'Agence de l'Eau à la réalisation de travaux d'assainissement collectif seront conditionnées à l'existence d'un plan d'épandage. Ceux-ci vont donc probablement se développer.

Seules deux stations peuvent actuellement recevoir les boues ou matières de vidange sur le territoire. Afin d'assurer une bonne épuration, les SPANC recommandent et contrôlent la vidange régulière des systèmes d'assainissement. Avec le développement des SPANC et le contrôle des installations existantes, le problème de la gestion des matières de vidanges et des graisses va se poser de manière croissante.

2.5 Pollution domestique totale

Les figures 29 à 31 ont pour objectif d'estimer les parts relatives des rejets domestiques bruts traités en assainissement autonome et en assainissement collectif, dans les rejets domestiques bruts totaux.

Figure 25 : Comparaisons des charges brutes traitées en assainissement autonome et en assainissement collectif

Les charges brutes traitées par des dispositifs d'assainissement collectif sont globalement supérieures à celles assainies au moyen d'installations autonomes, du fait du nombre important de raccordés sur la ville de Figeac. Cependant, exception faite du sous bassin Célé-St Perdoux, du sous bassin du Moulègre (abritant Le Rouget) et du sous bassin Rance-Arcambe où est implantée la ville de Maurs, ce sont les habitations assainies individuellement qui apportent la charge brute la plus importante.

Les figures 30 et 31 ci-dessous permettent de comparer les charges nettes apportées par hectare par les habitations assainies individuellement et celles assainies collectivement, par temps sec puis par temps de pluie. Cette comparaison est délicate car si les charges nettes issues de l'assainissement...
collectif sont facilement appréciables (suivi des stations), celles issues de l'assainissement individuel
sont difficiles à évaluer. L'abattement estimé pour les systèmes d'assainissement non collectif par
temps sec est de 75 % de la charge brute.

![Figure 26: Comparaison des charges nettes issues de l'assainissement autonome et de
l'assainissement collectif par temps sec](image)

Avec le ratio proposé par temps sec, ce sont les habitations assainies individuellement qui
apporteraient la charge la plus importante sur 12 sous bassins. Seuls les sous bassin Célé-St
Perdoux (station de Figeac) et dans une moindre mesure Source Célé (station de Calvinet) dérogent à
cette règle.

![Figure 27: Comparaison des charges nettes issues de l'assainissement autonome et de
l'assainissement collectif par temps de pluie](image)

Par temps de pluie nous avons estimé que l'abattement des systèmes d'assainissement non collectif
était de 50 %. Les rejets liés aux systèmes d'assainissement collectifs ont été considérés équivalents à ceux enregistrés en période de temps sec si le réseau de collecte est séparatif, mais ils ont été estimés égaux à 80 % des charges brutes si tout ou partie du réseau est unitaire ou mixte.

Par temps de pluie la charge apportée par les habitations assainies collectivement de réseau collectif de collecte séparatif de réseau unitaire ou mixte : Figeac sur Céle-St Perdoux, Maurs sur Rance-Arcambe, Le Rouget et St-Mamet la Salvetat sur le Moulègre et Bagnac sur Céle-Aujou…

Les graphiques ci-dessous présentent respectivement les charges brutes (réelles) et nettes (estimées) par temps sec issues de l'assainissement (collectif + individuel) par hectare.

Figure 28 : Charges brutes totales issues des rejets domestiques

Figure 29: Charges nettes totales issues des rejets domestiques par temps sec
Le sous bassin Célé-St Perdoux est celui qui reçoit les plus fortes charges (brute et nette) annuelles par hectare, elles sont essentiellement dues à l’assainissement collectif de la ville de Figeac. Le réseau de Figeac est en cours de réhabilitation et la station sera réhabilitée en 2008. On peut donc supposer que la charge domestique nette sera moins élevée sur ce sous bassin à compter de cette date.

Les sous bassins Célé-Aujou, Drauzou, Moulègre et Rance-Arcambe reçoivent aussi des charges nettes plus fortes que le reste du territoire. Ces charges sont surtout dues à l’assainissement autonome (à l’exception du Moulègre et de Rance Arcambe par temps de pluie) car ces bassins sont peu équipés en assainissement collectif.

Il convient toutefois de rester prudent sur les charges nettes estimées, notamment celles de l’assainissement non collectif qui ont été calculées à partir de pourcentages moyens de traitement.

Pollution domestique totale : à retenir !

Sur le bassin du Célé les rejets domestiques assainis par des dispositifs autonomes apportent la plus grande partie des charges polluantes domestiques brutes. Sur la base des taux d’abattement indiqués, par temps sec les charges nettes après traitement autonome, seraient pour 12 sous bassins sur 14 plus fortes que celles rejetées par l’assainissement collectif. Seuls les sous bassins Célé-St Perdoux, qui contient la ville principale du bassin, et dans une moindre mesure Source Célé dérogent à cette règle.

Par contre, toujours sur la base des ratios estimés, par temps de pluie c’est l’assainissement collectif qui apporterait la charge nette la plus importante. Si l’on retire les charges apportées par la STEP de Figeac, la part de l’assainissement autonome redevient prépondérante dans la charge totale.

Il convient de relativiser cette comparaison puisque la concentration des rejets en un seul point pour l’assainissement collectif peut au final présenter des répercussions plus importantes que celles liées aux rejets épars des systèmes d’assainissement non collectif. Par ailleurs, l’absence de données fiables sur le rendement des systèmes d’assainissement non collectif et sur le taux d’abattement applicable globalement sur le bassin du Célé rend les comparaisons difficiles.

Une fois les travaux de réhabilitation et de création des principales STEP terminés (prévus pour 2007 et 2008), des efforts seront donc à réaliser pour améliorer le traitement des eaux usées raccordées par temps de pluie mais aussi et surtout pour diagnostiquer puis réhabiliter les systèmes d’assainissement individuels.
3 Activités industrielles et urbanisation

3.1 Le contexte

Les activités industrielles présentes sur le bassin peuvent avoir une influence sur la ressource en eau et les milieux aquatiques de deux manières :

- **Les prélèvements en eau** :
 L’ eau tient une place importante dans les procédés industriels et les industries sont souvent de grandes consommatrices. La qualité de l’eau peut être alors déterminante pour la satisfaction de l’usage. Sur le bassin du Célé, classé en zone de répartition des eaux, tout prélèvement non domestique (> 1000 m3/an) est soumis à déclaration si le débit associé est inférieur à 8 m3/heure et à autorisation au-delà de ce débit.

Il en est de même pour les prélèvements en rivière, mais ces derniers, afin de satisfaire d’autres usages en aval, doivent dans le cas des cours d’eau non domaniaux (comme le Célé et ses affluents), faire l’objet d’une autorisation si la capacité de prélèvement dépasse 5% du débit d’étiage ou d’une déclaration pour un prélèvement compris entre 2 et 5% du débit d’étiage.

- **Les rejets** :
 Si l’eau prélevée n’est pas entièrement consommée, elle est rejetée après usage et se pose alors le problème des risques de pollution associés à ces rejets.

3.2 Les usagers et leurs représentants

Les industriels sont regroupés au sein des Chambres de Commerce et d’Industrie (CCI), les artisans sont généralement membres de la Chambre de Métiers.

Les entreprises les plus consommatrices d’eau ou présentant des rejets importants sont soumises à redevance :

- Les forages pour les prélèvements industriels doivent être équipés de compteurs et le volume annuel prélevé doit être déclaré à l’Agence de l’Eau qui perçoit une redevance sur la quantité d’eau prélevée.
- Les analyses de rejets, sont issues de l’autocontrôle réalisé par les entreprises et d’analyses effectuées par des laboratoires agréés. Ces données sont transmises à l’Agence de l’Eau et servent aux calculs d’assiette de pollution. Lorsqu’il n’y a pas de mesure, la pollution est estimée de manière forfaitaire à partir de la production moyenne et du nombre d’employés.

Sur les 1190 entreprises lotoises, 348 présentent un risque de pollution pour la ressource en eau (rejet sous forme liquide). Sur le Cantal, 66 entreprises susceptibles de contaminer le milieu aquatique par leurs rejets ont été identifiées.

Sources :
CCI du Lot, Liste des établissements industriels, 2005
Schémas Communaux d’Assainissement
Ces structures peuvent être réparties, tel que suit, en fonction du type de rejet généré :

<table>
<thead>
<tr>
<th>Type de rejet</th>
<th>Type d’activités concernées</th>
<th>Département du Lot (sources : CCI)</th>
<th>Département du cantal (sources : SCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nombre de structures sur le B.V.</td>
<td>Pourcentage correspondant</td>
</tr>
<tr>
<td>A conséquence chimique : produits toxiques, tels que les huiles, les métaux, les colorants, les détergents…</td>
<td>Carrosserie ; commerce et réparation automobile</td>
<td>27</td>
<td>36,5%</td>
</tr>
<tr>
<td></td>
<td>Fabrication de machines et d’équipements</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Services aux entreprises ; contrôle et analyses techniques</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Travail des métaux ; récupération de matières métalliques recyclables</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transformation des matières plastiques ; Travail du bois et imprimerie</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabrication d’ouvrages en béton</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction, travaux de finition et Production d’électricité</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Services personnels (blanchisserie, coiffure, soins…) et Production de parfums</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A conséquence bactériologique et sur l’oxygénation : matières organiques, telles que les graisses ou excréments…</td>
<td>Agriculture, sylviculture et Services annexes</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industries alimentaires</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commerce de gros produits agricoles bruts</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commerce de détail en magasin spécialisé ou non, ou hors magasin</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Campings, hôtels, restaurants, Cafés et Traiteurs</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activités pour la santé humaine et action sociale</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 53 : Répartition des entreprises du bassin en fonction de leur type de rejet

On constate une prédominance des entreprises susceptibles d’avoir des rejets avec des concentrations importantes en bactéries, ce qui peut contribuer aux problèmes de contamination des eaux observés sur le territoire. Cependant, il convient de rester très prudent vis-à-vis de ce tableau. Seul le nombre d’entreprises y est mentionné et aucune donnée quantitative n’est fournie (quantité de rejets), ce qui ne permet pas d’analyser ces chiffres quant à la pollution réellement engendrée.

Dans le cadre du SAGE, il paraîtrait intéressant d’évaluer la quantité exacte des prélèvements et des rejets liés aux entreprises et non seulement des industries soumises à redevance.

Les Usagers et leurs représentants : à retenir !

414 entreprises pouvant présenter un risque de pollution pour la ressource en eau ont été recensées sur le bassin versant. Il s’agit essentiellement de structures d’accueil (campings, hôtels, restaurants…), de commerces de détail et de services.

66 % de ces entreprises sont susceptibles d’avoir des rejets à forte charge bactérienne.
3.3 La pollution d'origine industrielle

Sources :
Agence de l'Eau Adour-Garonne, Liste des industries soumises à redevances, 2006
Schémas Communaux d'Assainissement

3.3.1 Modalités de traitement des effluents

Les modalités d'assainissement des rejets industriels sont connues pour les 11 industries principales, soumises à redevance, ainsi que celles étudiées dans le cadre des diagnostics de fonctionnement d'assainissement effectués lors des SCA.

Le tableau suivant détaille les caractéristiques des principales industries :

<table>
<thead>
<tr>
<th>Dépt</th>
<th>Commune</th>
<th>Nom de l'industrie</th>
<th>Branche d'activité</th>
<th>Raccordées</th>
<th>Convention de raccordement</th>
<th>Prétraitement, traitement ou travaux effectués</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eaux vannes</td>
<td>Eaux ind.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Maurs</td>
<td>SARL Gout Godard</td>
<td>Agroalimentaire</td>
<td>O</td>
<td>O</td>
<td>Bâche de relevage, dégrillage, canal de mesure.</td>
</tr>
<tr>
<td>15</td>
<td>Maurs</td>
<td>Sotrico S.A.</td>
<td>Agroalimentaire</td>
<td>O</td>
<td>O</td>
<td>Bac dégraisseur de 2500 L</td>
</tr>
<tr>
<td>15</td>
<td>Parlan</td>
<td>SARL Salaisons</td>
<td>Agroalimentaire</td>
<td>O</td>
<td>O</td>
<td>Convention de raccordement</td>
</tr>
<tr>
<td></td>
<td>Laborie et fils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Le Rouget</td>
<td>MAS S.A.</td>
<td>Agroalimentaire</td>
<td>O en partie</td>
<td>N</td>
<td>Bac dégraisseur insuffisant. Analyse des rejets dans le cadre du SCA + analyse par un cabinet indépendant (Gaudrio).</td>
</tr>
<tr>
<td>46</td>
<td>Bagnac-sur-Céle</td>
<td>Etablissement Bourell Frères</td>
<td>Mécanique et traitements de surface</td>
<td>O</td>
<td>N</td>
<td>Station d'épuration de détoxification. Production de 20 T de boues par an.</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Centre Hospitalier de Figeac</td>
<td>Commerces et services</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Lycée Polyvalent Régional Champollion</td>
<td>Commerces et services</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Figeac Cedex</td>
<td>Société Nouvelle Larnaudie</td>
<td>Agroalimentaire</td>
<td>O</td>
<td>O</td>
<td>Rejet hors BV, ramené par le réseau collectif sur le BV</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Figeac AERO</td>
<td>Mécanique et traitements de surface</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 54 : Mode de raccordement des principales industries rejetant sur le Bassin du Céle

Entreprise non soumise à redevance.
Sept de ces industries rejettent leurs eaux vannes et leurs eaux industrielles dans le système d’assainissement collectif et leur pollution a été comptabilisée dans la partie assainissement collectif.

Les rejets industriels de 5 entreprises ne sont pas raccordés et doivent donc subir un traitement complet (dans l’entreprise) avant rejet au milieu naturel.

3.3.2 Pollutions produites

Les petites entreprises et les entreprises artisanales sont, pour la plupart, raccordées au réseau collectif. Le traitement de leurs effluents est assuré par la STEP de la commune. Les industries non raccordées que nous avons pu recenser sont situées sur la carte 24 de l’atlas, il s’agit essentiellement de structures d’accueil : hôtels, restaurant, camping... (cf. paragraphe 3.4).

Pour toutes les industries soumises à la redevance pollution de l’Agence de l’eau, les valeurs brutes obtenues lors des analyses de 2004 sont reportées dans le tableau 55. Les rendements des traitements internes, calculés à partir des rejets bruts et nets, y sont également reportés.

<table>
<thead>
<tr>
<th>Dépt</th>
<th>Commun</th>
<th>Nom de l’industrie</th>
<th>Régime pollution (forfait/ mesure)</th>
<th>Charge brute en kg/jour (rendement)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MES (kg/j)</td>
<td>MO (kg/j)</td>
</tr>
<tr>
<td>15</td>
<td>Maurs</td>
<td>SARL Gout Godard</td>
<td>M</td>
<td>1 (0 %)</td>
</tr>
<tr>
<td>15</td>
<td>Maurs</td>
<td>Sotrico S.A.</td>
<td>F</td>
<td>6 (0 %)</td>
</tr>
<tr>
<td>15</td>
<td>Parlan</td>
<td>S.A.R.L. Salaisons Laborie et fils</td>
<td>M</td>
<td>2 (0 %)</td>
</tr>
<tr>
<td>15</td>
<td>Le Rouget</td>
<td>MAS S.A.</td>
<td>M</td>
<td>4 (0 %)</td>
</tr>
<tr>
<td>46</td>
<td>Bagnac-sur-Célé</td>
<td>Etablissement Bourel Frères</td>
<td>F</td>
<td>10 (50 %)</td>
</tr>
<tr>
<td>46</td>
<td>Bagnac-sur-Célé</td>
<td>Société des Carrière du Massif Central</td>
<td>F</td>
<td>9 810 (100 %)</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Cedex</td>
<td>Ratier Figeac</td>
<td>F</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Cedex</td>
<td>Centre Hospitalier de Figeac</td>
<td>F</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Cedex</td>
<td>Lycée Polyvalent Régional Champillon</td>
<td>F</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Cedex</td>
<td>Société Nouvelle Larnaudie</td>
<td>M</td>
</tr>
<tr>
<td>46</td>
<td>Figeac</td>
<td>Figeac</td>
<td>Figeac AERO</td>
<td>F</td>
</tr>
</tbody>
</table>

**Tableau 55 : Estimation des principaux rejets industriels après traitement dans le Bassin du Célé (MES, MO, MI, N, P, METOX)
Sources: AEAG, 2004**

En 2004, sur les 11 établissements soumis à la redevance pollution de l’Agence de l’eau, l’usine Ratier de Figeac était celle qui présentait le flux annuel net le plus chargé en polluants que ce soit en Matières En Suspension (MES), en Matières Oxydables (MO), en Matières Inhibitrices (MI), en

17 Rendement épuratoire en % : Charge nette en kg par jour / Charge brute en kg par jour.
Métaux toxiques totaux (METOX), en matières azotées (N) ou en matières phosphorées (P). D’après les rendements, nous pouvons discerner un manque d’efficacité du système d’épuration de cette usine, notamment pour les métaux toxiques totaux. Depuis 2005, un nouveau système d’assainissement est en place. Il a permis selon l’Agence de l'Eau d’atteindre un rendement d’épuration de 100 % sur les Matières Inhibitrices (MI). Les charges nettes en METOX restent toutefois élevées car elles sont estimées de manière forfaitaire à partir du nombre d’employés mécaniques et de l’huile soluble consommée (surévaluée).

La charge en METOX produite par l’entreprise Figeac AERO est également évaluée à partir du nombre d’employés et s’avère donc importante.

Les rendements obtenus mettent aussi en évidence un manque d’efficacité du système d’épuration pour les établissements Bourrel, plus particulièrement pour les matières inhibitrices et les métaux toxiques totaux ; voire même une absence complète d’épuration chez MAS S.A. Toutefois, l’entreprise MAS a réalisé des travaux sur l’unité « assainie directement » (hors réseau collectif). Nous ne possédons pas les nouvelles données relatives à cette unité de traitement. S’ajoute pour cette entreprise un problème de rejets mal « pré-traités » dans le réseau d’assainissement collectif pour la deuxième unité de production ce qui provoque des dépôts fréquents dans le réseau communal.

Certaines entreprises présenteraient donc des rejets notables qui sont connus et qu’il conviendrait de supprimer. Ces mauvais résultats ont des répercussions sur la qualité de l’eau à l’aval de Bagnac sur Célé, de Figeac (sur concentrations en métaux lourds) et très certainement sur le bassin du Moulègre (non suivi actuellement).

La pollution industrielle : à retenir !

Sur le bassin du Célé, la majorité des entreprises sont raccordées au réseau collectif. Ces petites entreprises, pour la plupart d’accueil, de commerce de détail (charcuterie…) ou de services, peuvent entraîner des disfonctionnements des systèmes d’épuration collectifs (réseau bouché, afflux de pollution sur les systèmes d’assainissement en fonction des périodes de pointe d’activité…).

Peu de communes ont mis en place des conventions de raccordement. L’établissement de conventions permettrait de mieux connaître et de contrôler les rejets industriels reliés au réseau collectif, dans l’objectif d’améliorer le fonctionnement et le rendement de ces ouvrages.

Sur les 11 plus grandes entreprises du territoire ayant des rejets liquides, 5 entreprises disposent de systèmes individuels de traitement. Un de ces établissements, non-conforme, est source de disfonctionnements importants (accumulation de graisses dans le réseau collectif), une autre provoque des rejets de métaux toxiques dans le Célé.

3.4 Les structures d’accueil

Le bassin du Célé étant assez touristique, le nombre de campings est important notamment en basse vallée (8 campings entre Camboulit et Cabrerets). A partir des données en notre possession (SCA, listes des entreprises du Lot), nous avons recensé 27 campings, dont un peu plus de la moitié (13) sont raccordés à un réseau collectif.
S'ajoutent aux campings d'autres types d'hébergement touristique et de structures d'accueil susceptibles de générer des rejets (pollution bactériologique notamment). Une partie seulement de ces établissements est raccordée à un réseau collectif.

En dehors des chambres d'hôte et des gîtes, qui sont assimilables à des habitations individuelles, on compte :
- 4 centres de vacances
- 5 centres de loisirs ou d'accueil
- 5 hôtels-restaurants
- 4 autres hébergements touristiques
- 14 restaurants

Ces établissements sont situés sur la carte 24.

La connaissance de certains établissements (campings) et de leur problème de fonctionnement laisse à penser que la pression exercée par ces structures n'est pas négligeable. Cependant, le manque d'informations sur les capacités d'accueil de ces établissements et sur les systèmes de traitement des rejets existants rend l'évaluation de la pollution engendrée difficile.

Seules deux de ces structures (camping de Brengues et Centre de loisirs "Les amis du Célé" à Ornac) ont des stations de traitement suivies par le SATESE du Lot. Le système d'épuration du camping de Brengues fonctionne de façon satisfaisante. Il a été restauré dans le cadre du Contrat de rivière Célé. Par contre la station du centre de loisirs d'Ornac connaît des problèmes de surcharge en période de pointe, un vieillissement généralisé des équipements et des pannes fréquentes.

3.5 L'énergie hydroélectrique

L'étude sur les chaussées du bassin du Célé du bassin du Célé, menée en 2001 et complétée en 2002, a permis de recenser 12 chaussées dont l'usage principal est la production d'hydroélectricité. Sur ce nombre, 6 chaussées sont recensées pour la production d'électricité par les services de l'état (DDAF). La production des autres « picocentrales » est liée à un usage domestique direct.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Commune</th>
<th>Puissance kW</th>
<th>Cours d'eau prise et rejet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val de Rance</td>
<td>LEYNHAC</td>
<td>643</td>
<td>Rance</td>
</tr>
<tr>
<td>Moulin d'Anès</td>
<td>SAINT-JULIEN-DE-TOURSAC</td>
<td>470</td>
<td>Anès</td>
</tr>
<tr>
<td>Roquetanière</td>
<td>MAURS et SAINT CIRGUES</td>
<td>1218</td>
<td>Veyre et Ruisseau Noir</td>
</tr>
<tr>
<td>Moulin de Marcilhac</td>
<td>MARCILHAC SUR CELE</td>
<td>112</td>
<td>Célé</td>
</tr>
<tr>
<td>Moulin de la Merle</td>
<td>SAULIAC SUR CELE</td>
<td>258</td>
<td>Célé</td>
</tr>
<tr>
<td>Moulin de Cabrerets</td>
<td>CABRERETS</td>
<td>400</td>
<td>Célé</td>
</tr>
</tbody>
</table>

Tableau 56 : Les microcentrales du bassin du Célé
La puissance totale produite par les microcentrales est de 3101 kW. Plusieurs projets d’équipement existent sur des chaussées auparavant équipées. L’équipement lié à l’usage domestique concernerait la majorité des projets existants sur les affluents du Célé. Ceux à dimension de production d’hydroélectricité concernent surtout le Célé (Moulins de Baldy, Maynard, Merlançon, Laporte…).

Energie hydroélectrique : à retenir !

6 Chaussées sont actuellement utilisées pour la production d’électricité sur le bassin du Célé. Compte tenu des enjeux actuels de production d’énergie renouvelable, on peut penser que de nouvelles chaussées vont être équipées pour la production d’électricité.

3.6 Prélèvements industriels

<table>
<thead>
<tr>
<th>Dépt</th>
<th>Commune</th>
<th>Nom de l’industrie</th>
<th>Régime prélèvement (forfait / mesure)</th>
<th>Activité</th>
<th>Eaux prélevées</th>
<th>Volume prélevé en 1997 (en m3)</th>
<th>Volume prélevé en 2004 (en m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Maurs</td>
<td>S.A.R.L. Gout Godard</td>
<td>F</td>
<td>Agroalimentaire</td>
<td>Surface</td>
<td>0</td>
<td>16 170</td>
</tr>
<tr>
<td>46</td>
<td>Bagnac-sur-Célé</td>
<td>Société des Carrière du Massif Central</td>
<td>F</td>
<td>Industries extractives</td>
<td>Surface</td>
<td>114 400</td>
<td>57 840</td>
</tr>
<tr>
<td>46</td>
<td>Figeac Cedex</td>
<td>Ratier Figeac</td>
<td>M</td>
<td>Mécanique et traitements de surface</td>
<td>Nappe phréatique</td>
<td>-</td>
<td>93 524</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114 400</td>
<td>167 534</td>
</tr>
</tbody>
</table>

Tableau 57 : Prélèvements d’eau par les activités industrielles du Bassin du Célé (comparaison 1997 et 2004)

Comme l’indique le tableau ci-dessus, les Carrières du Massif Central consomment beaucoup moins d’eau (43 %) depuis les travaux de mise en place d’un circuit fermé des eaux de lavage réalisé en 2001.

Sources : Agence de l’Eau Adour - Garonne
Prélèvements industriels : à retenir !

La consommation d'eau par les industries soumises à redevance est minime par rapport aux autres prélèvements. Selon nos estimations, les prélèvements industriels nets ne représentent en effet que 0,3 % des prélèvements nets totaux à l'étage.

La consommation d'eau potable par les petites industries est plus difficile à estimer. 48 à 60 % (cf. partie 1.3) de l'eau potable serait utilisée pour des usages non domestiques (abreuvement du bétail, industrie...). Il serait intéressant de préciser la part de chacun de ces autres usages dans la consommation totale.

3.7 Extraction de matériel

Sources : DDAF du Cantal, DRIRE Midi-Pyrénées

Sur le bassin versant du Célé, les activités d'extraction concernent essentiellement la roche calcaire. Il s'agit d'extraction de granulats par concassage de pierre.

8 sites d'extraction sont recensés par la Direction Régionale de l'Industrie de la Recherche et de l'Environnement (DRIRE) du Lot et la DDAF du Cantal.

<table>
<thead>
<tr>
<th>Commune de la carrière</th>
<th>Exploitant</th>
<th>Production</th>
<th>Production annuelle en tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montmurat</td>
<td>Sté des Chaux de MONTMURAT</td>
<td>Calcaire</td>
<td>15 000 (prévision 1991)</td>
</tr>
<tr>
<td>Bagnac sur Célé</td>
<td>Sté des Carrières du Massif Central</td>
<td>Gneiss (roche éruptive)</td>
<td>350 000 (production maximale autorisée)</td>
</tr>
<tr>
<td>Blars</td>
<td>SARL Marcouly</td>
<td>Calcaire</td>
<td>80 000 (production maximale autorisée)</td>
</tr>
<tr>
<td>Cambes</td>
<td>SA Grégory</td>
<td>Calcaire</td>
<td>60 000 (production maximale autorisée)</td>
</tr>
<tr>
<td>Camburat</td>
<td>SA Capraro & Cie</td>
<td>Sables miniers</td>
<td>100 000 (production maximale autorisée)</td>
</tr>
<tr>
<td>Espédaillac</td>
<td>SA Ciorat & Cie</td>
<td>Calcaire</td>
<td>200 000 (production maximale autorisée)</td>
</tr>
<tr>
<td>Lissac et Mouret</td>
<td>Société Auxiliaire de Travaux</td>
<td>Calcaire</td>
<td>100 000 (production maximale autorisée)</td>
</tr>
<tr>
<td>Livernon</td>
<td>SARL STAP</td>
<td>Calcaire</td>
<td>150 000 (production maximale autorisée)</td>
</tr>
</tbody>
</table>

Tableau 58 : Carrières actives sur le territoire

Aucune entreprise n'effectue de travaux d'extraction de matériaux alluvionnaires sur le territoire. L'activité d'extraction ne génère donc pas de modification du lit majeur des cours d'eau.

L'extraction de granulats peut avoir un impact sur la qualité de l'eau par mise en suspension de particules notamment lorsqu'elles sont proches du cours d'eau et par rejets d'eaux de lavages chargées en MES.

La principale entreprise d'extraction de granulats (carrières de Bagnac) a fait l'objet d'un programme d'installation d'une station de recyclage des eaux de lavage (dans le cadre du contrat de rivière) et présente de ce fait à ce jour de faibles rejets de MES dans le cours d'eau.

A noter, concernant la carrière de Camburat que les sables miniers issus de l'ancienne activité (extraction de zinc) sont stockés sur deux sites. Malgré leur classement en matériaux inertes, leur utilisation semble peu probable. Un réaménagement des deux sites est donc en projet.

Système de recyclage des eaux des carrières de Bagnac
3.8 Déchets physiques

Les industries produisent aussi des déchets physiques qui n'ont pas un impact direct sur la qualité de l'eau mais qui peuvent être charriés par les rivières. Il s'agit de déchets volontairement jetés (dépôts et décharges sauvages) ou mobilisables par la rivière lors des crues.

C'est par exemple le cas des pots de fleurs vides de la pépinière de Bagnac. Les pots sont entreposés à l'extérieur, dans la zone d'expansion des crues du Célé et sont fortement mobilisables. À chaque nettoyage de la rivière, les bénévoles en retrouvent un grand nombre en aval de Bagnac.

L'extension des activités industrielles dans Figeac, en bordure de la RN122 notamment, a entraîné l'implantation de locaux sur d'anciennes zones d'expansion des crues. Les déchets industriels stockés à l'extérieur sont mobilisables lors des crues. De nombreux déchets d'origine industrielle sont trouvés lors des nettoyages : morceaux de carrelage, ferrailles …

Les déchets de chantier du bâtiment et des travaux publics représentent également un enjeu important. Sur le canton de Figeac l'industrie du bâtiment produit plus de 2500 tonnes de déchets banals et entre 75 et 200 tonnes de déchets dangereux. La gestion de ces déchets est organisée par les Plans Départementaux pour la gestion des déchets du BTP du Lot et du Cantal. Il existe un centre de stockage des déchets inertes du bâtiment à Cambouilh. Il n'en existe à ce jour pas sur la partie cantalienne du territoire, mais le plan de gestion des déchets du BTP du Cantal prévoit la mise en place d'un centre à St-Mamet la Salvetat.

Les déchets des particuliers et de l’activité agricole (bâches, ficelles, balles rondes…) s'ajoutent à ces déchets d'origine industrielle.

Il n'existe pas d'installation de traitement des déchets en fonctionnement ou en construction sur le territoire. Par contre, il existe une installation de stockage des déchets ménagés d'une capacité de 7000 tonnes et un centre de tri à Figeac (Nayrac). Ce site comprend aussi une déchetterie18, une décharge de classe 3 qui peut recevoir les gravats et une plate forme de compostage des déchets verts (780 tonnes traitées en 2002). Des déchetteries existent aussi à Bagnac, Cabrerets, Cajarc, Lacapelle Marival, Lauzes, Latronquiére et Maurs. Une autre est en projet à Livernon ainsi qu'à Montsalvy et à St-Mamet la Salvetat. Certaines collectivités, dans l’attente de la mise en place des déchetteries, organisent des collectes par point d’apport volontaire des encombrants. Des bennes sont alors placées dans les communes de façon temporaire ou permanente : Brengues, Corn…

18 Il s’agit d’espaces aménagés, gardiennés et clôturés, où les particuliers et les professionnels peuvent apporter leurs déchets encombrants et d’autres déchets triés en les répartissant dans des contenants distincts en vue de valoriser, traiter ou stocker au mieux les matériaux qui les constituent.
La création de déchetteries à Bagnac, Livernon ... doit permettre la suppression de ces bennes. Cela soulève toutefois des inquiétudes sur le devenir des encombrants des particuliers.

Malgré ces centres, le Plan départemental d'élimination des déchets ménagers et assimilés du Lot recensait, en 2004, 21 décharges sauvages sur le bassin du Célé. Certaines d'entre elles sont à proximité immédiate des cours d'eau. La résorption et la réhabilitation de ces décharges sont prévues par le plan d'ici 2010.

Déchets physiques : à retenir !

L'installation de 8 déchetteries sur le territoire a permis de constater depuis quelques années une diminution du volume de déchets délaissés en bord de cours d'eau. Mais des déchets industriels (industrie du bâtiment notamment) ou agricole, sont encore régulièrement retrouvés après les périodes de hautes eaux.

La mise en place de nouvelles déchetteries et d’un centre de stockage des déchets inertes du bâtiment à St-Mamet la Salvetat devrait permettre de réduire encore les stockages dans les zones d'expansion des crues.

3.9 Urbanisation et infrastructures

Les réseaux de communication routiers et ferroviaires ainsi que les zones urbanisées peuvent modifier l'écoulement des eaux et engendrer une pollution des eaux. C'est pourquoi il nous a semblé important d'intégrer une partie sur l'urbanisation et les infrastructures dans ce document.

- **Infrastructures routières et ferroviaires**

Les infrastructures de transport sont à l'origine de plusieurs types de pollution :
- Une pollution chronique (métaux lourds, matières organiques, hydrocarbures...) qui résulte du lessivage des chaussées et fossés recevant des particules solubles issues du trafic routier ou ferroviaire.
- Une pollution saisonnière liée à l'utilisation de produits phytosanitaires pour l’entretien de la voirie, par les DDE et les services techniques des collectivités.
- Une pollution accidentelle suite aux accidents de la circulation pouvant notamment impliquer des poids lourds.

Les routes ou chemins de fer constituent de plus des zones de coupure et modifient les circulations d'eau.

Le réseau routier est peu dense sur le bassin du Célé. Il comprend :
- aucune autoroute,
- seulement deux routes nationales d'un linéaire total de 61 km (dont 20 km en bord de cours d'eau) : la RN 122 vers Aurillac et la RN 140 vers Brive la Gaillarde,
- environ 120 km de routes de liaison interrégionale ou de dégagement (aucune en bord de cours d'eau) : les D 822, D 653, D31 et D19,
- une départementale assez fréquentée (notamment en été pour le tourisme) : la D 41 qui longe le Célé sur 50 km de Figeac à Cabrerets.

La gare SNCF de Figeac est assez bien desservie : lignes en direction de Aurillac, Brive la Gaillarde, Cahors, Rodez, Toulouse. Au total il y a environ 67 km de voie ferrée sur le territoire dont 47 en bord de cours d'eau (Moulègre, Rance et Célé).

Sur le bassin du Célé certaines pratiques d'entretien des infrastructures sont susceptibles de provoquer une pollution des eaux :
- utilisation de rampes d'aspersion du balastre pour l'entretien régulier des voies ferrées avec des produits phytosanitaires,
- traitement des talus et fossés le long des voies ferrées avec des produits phytosanitaires,
- résidus du curage des fossés de bord de route parfois déposé sur les talus de berge.

• Constructions en zone d’expansion des crues

L'urbanisation de zones d'expansion des crues (constructions, remblai en lit majeur, imperméabilisation des surfaces), peut accentuer les phénomènes de crues et leur impact.

Les zones d'expansion des crues à l'amont et à l'aval de Figeac ont été assez fortement urbanisées du fait de l'implantation de locaux industriels. Un PPRI est censé à ce jour encadrer de nouvelles atteintes aux champs d'expansion de crue (cf. p.69)

Le projet de déviation de Figeac, et notamment la traversée de la plaine de Ceint d'Eau où les crues ont tendance à s'étaler, constituera un obstacle supplémentaire à l'écoulement des eaux. En effet, la traversée d'une vallée par une route implique la réalisation de remblais qui limitent les zones d'expansion des crues et les zones de divagation. De fortes préoccupations ont été soulevées à ce sujet lors des réunions des groupes de travail du SAGE.

• La gestion de l'urbanisation

En France le principal outil de planification de l'urbanisme est le Plan Local d'Urbanisme (PLU). Il remplace le plan d'occupation des sols (POS) depuis la loi 2000-1208 du 13 décembre 2000 relative à la solidarité et au renouvellement urbains, dite loi SRU. L'élaboration des PLU relève de la compétence des collectivités locales.

Le PLU comprend :
- Un rapport de présentation qui expose le diagnostic, analyse l'environnement et explique les règles ;
- Un projet d'aménagement et de développement durable qui définit les orientations générales d'aménagement et d'urbanisme retenues pour l'ensemble de la commune ;
- Un ou plusieurs documents graphiques ;
- Un règlement qui délimite les zones urbaines (U), les zones à urbaniser (AU), les zones agricoles (A) et les zones naturelles (N). Il fixe les règles applicables à l'intérieur de chacune de ces zones ;
- Des annexes.

Les petites communes se dotent souvent quant à elles d'une carte communale. La carte communale est un document simple qui comprend un rapport de présentation et un ou plusieurs documents graphiques. Elle ne comprend pas de règlement, c'est le règlement national d'urbanisme qui s'applique. Il appartient à la commune de mener la procédure d'élaboration de la carte communale.

Sur les communes qui n'ont ni PLU, ni POS, ni carte communale c'est le Règlement national d'urbanisme qui s'applique. Il s'agit de l'ensemble des dispositions à caractère législatif et réglementaire applicables en matière d'occupation et d'utilisation des sols sur une commune ne disposant pas de PLU. Ces règles concernent la localisation, la desserte, l'implantation des constructions, leur aspect extérieur…

Sur le bassin du Célé 42 communes disposent d'un document d'urbanisme approuvé ou en révision, et 24 documents sont en cours d'élaboration.

<table>
<thead>
<tr>
<th>Type de document d’urbanisme</th>
<th>Cantal</th>
<th>Lot</th>
<th>Aveyron</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>approuvé ou en révision</td>
<td>7</td>
<td>22</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>en élaboration</td>
<td>1</td>
<td>14</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Carte communale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>approuvée ou en révision</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>en élaboration</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>55</td>
<td>1</td>
<td>66</td>
</tr>
</tbody>
</table>

Tableau 59 : Bilan des documents d'urbanisme sur le territoire

Sources : Direction Générale de l’Urbanisme, de l’Habitat et de la Construction

Urbanisation et infrastructures : à retenir !

Le réseau de transport est peu dense sur le bassin du Célé et comporte peu de grandes voies de circulation. Cependant les 20 km de route nationale, 50 km de route départementale touristique et surtout 47 km de voie ferrée, en bord de cours d’eau sont susceptibles d’avoir un impact fort sur la qualité et la circulation des eaux, d’autant plus que ces axes sont souvent bordés par des zones urbanisées.

Les documents d’urbanisme permettent de planifier l’urbanisation des communes en fonction des risques naturels, des milieux naturels mais aussi des besoins. Ils couvriront bientôt 65 % du territoire, les communes non couvertes étant proportionnellement plus nombreuses dans le Cantal.

L’entretien jugé inadapté des infrastructures routières et ferroviaires, ainsi que leur développement (déviation de Figeac) constituent une préoccupation soulignée de façon récurrente par les membres des groupes de travail du SAGE.
4 Activités agricoles et forestières

4.1 Les usagers et leurs représentants

Le monde agricole est caractérisé par la diversité de ses structures de représentation : administratives (DDAF), consulaires (Chambres d’Agriculture), syndicales, associatives (Association Départementale pour l’Aménagement des Structures d’Exploitations Agricoles - ADASEA), professionnelles, techniques et de recherche (INRA).

Les propriétaires forestier peuvent, quant à eux, se tourner vers :
- le CRPF, établissement public à caractère administratif, pour tous conseils relatifs à leur bois,
- le syndicat des propriétaires forestiers de leur département, pour défendre leurs intérêts,
- les coopératives forestières, les experts forestiers, les techniciens indépendants, les exploitants forestiers pour vendre leur bois, obtenir des prestations de service (rédaction Plan Simple de Gestion, travaux...)

Selon le Recensement Général Agricole (RGA) de 2000 (extrait en annexe 7) sur l’ensemble du bassin du Célé, 1 680 exploitations exploitent 66 416 ha, soit 40 ha en moyenne. Les exploitations professionnelles sont au nombre de 1024 et exploitent en moyenne 57 ha. 1 994 exploitants ou co-exploitants y travaillent.

En ce qui concerne l'âge des chefs d'exploitation, on constate que la plupart (43% des exploitants agricoles) sont dans la tranche 40-55 ans. Seuls les sous bassins Célé-Saint Perdoux et Célé-Enguirande présentent une majorité d’exploitants (respectivement 42% et 38%) dans la tranche d’âge supérieure à 55 ans. Les sous bassins Source Célé, Célé-Resssegue, Gorges Rance et Rance Arcambe ont une bonne répartition des agriculteurs dans chaque classe d’âge. Cet équilibre est un signe de dynamisme positif pour les bassins concernés.

La proportion d'exploitations en société (GAEC ou EARL) est faible. En effet, 88% des exploitants travaillent de façon individuelle, contre 81% en France. Le Veyre, avec 23 % de sociétés est le sous bassin où les sociétés sont les plus représentées.

Sur l’ensemble des sous bassins versants, 19% des exploitations étaient soumises au régime des Installations classées19 en 2000, dont seulement 1% (13 exploitations) soumises à autorisation et 18% soumises à déclaration.

19 Trois type de règlement existent pour le élevages: le Règlement Sanitaire Départemental (RSD), le régime des Installations Classées soumises à Déclaration (ICD) et le régime des Installations Classées soumises à Autorisation (ICA). L’éligibilité d’un élevage à un de ces règlements dépend du nombre d’animaux présents sur l’exploitation et impose des obligations différentes.
4.2 La pollution d'origine agricole

4.2.1 Origine des pollutions

Les activités agricoles génèrent surtout des matières en suspension, des matières organiques, des composés azotés (et phosphorés dans une moindre mesure) issus des engrais, et des micropolluants organiques et minéraux issus des produits phytosanitaires.

Deux processus interviennent dans la pollution des eaux :
- la pollution diffuse : par ruissellement des engrais et des effluents sur les parcelles agricoles ou par infiltration des matières azotées et phosphatées en excédent et des micropolluants vers les nappes.
- la pollution ponctuelle : essentiellement issue des fuites des bâtiments d'élevage.

Compte tenu des pratiques agricoles sur le bassin du Célé (part prédominante de l'élevage), les risques de pollution d'origine agricole sont en majorité liés aux pratiques d'élevage et la pollution bactériologique est à ce jour la plus préoccupante. Les contaminations d'origine agricole peuvent être multiples :
- lessivage des sols (ayant récemment reçu des fertilisants organiques) dans le cas de fortes pluies, de fortes pentes, ou d'épandage à proximité des cours d'eau ;
- accès des animaux aux cours d'eau (abreuvement) ;
- absence de traitement ou traitement inefficace des effluents peu chargés ;
- non récupération des jus (lisier, ensilage) ;
- équipements de stockage (fosse à lisier, fumière) quand ils présentent des problèmes d'étanchéité.

Certaines pratiques culturales et de production animales comportent donc un risque de pollution plus ou moins important. L'analyse de ces pratiques sur le bassin du Célé a permis de préciser ce risque :

<table>
<thead>
<tr>
<th>Pratiques culturales</th>
<th>Point Forts</th>
<th>Points faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engrais minéraux et traitements phytosanitaires peu utilisés</td>
<td>Pas d’organisation pour les prélèvements d’eau</td>
<td>Mais en monoculture et cultures spécialisées parfois « intensives »</td>
</tr>
<tr>
<td>Parcellaire en prairie important</td>
<td>Apport d’engrais de ferme parfois en hiver et près des cours d’eau ou sur des parcelles très pentues</td>
<td>Présence de sols nus en hiver</td>
</tr>
<tr>
<td>En général respect des besoins en azote et des dates d’apport</td>
<td>Chargement moyen « assez important » dans le Ségala et la Châtaigneraie (> 2 UGB /ha)</td>
<td>Abreuvement aux cours d’eau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Productions animales</th>
<th>Point Forts</th>
<th>Points faibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus de 80% des ateliers bovins ont du fumier</td>
<td>Stockage des effluents de ferme parfois insuffisant</td>
<td></td>
</tr>
<tr>
<td>Ateliers ovins ne produisant que du fumier pailleux</td>
<td>Traitement des eaux blanches rare</td>
<td></td>
</tr>
<tr>
<td>80% des ateliers porcins ont un stockage de lisier de 3 à 4 mois</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vache s’abreuvant dans un cours d’eau

Tableau 60 : Points forts et points faibles des pratiques agricoles du bassin

Source: Diagnostic agricole - 2000

20 Les effluents peu chargés comprennent trois types de rejets : les eaux brunes provenant des aires extérieures bétonnées fréquentées par les animaux, les eaux blanches issues du lavage de la machine à traire et du tank et les eaux vertes de lavage des quais de traite et aires d’attente.
4.2.2 La pression organique agricole

- La pression issue des productions végétales est faible sur le bassin versant du Célé. La Superficie en herbe\(^{21}\) représente 86,64 % de la SAU (sources : diagnostic agricole) et la Superficie Toujours en Herbe\(^{22}\) (STH) couvre 52,25 % de la SAU (sources : RGA), soit près de deux fois plus que la moyenne française. Ce paramètre permet de connaître la surface implantée en herbe, où les sols ne sont jamais nus. Sur ces surfaces, le risque de ruissellement et de lessivage est moins important que sur les terres arables\(^{23}\). La surface en céréales ne représente que 8% de la SAU. D’après les données récentes que nous avons pu obtenir (déclarations de surface 2005 ou 2006\(^{24}\)), la STH a peu évolué sur l'ensemble du territoire. La superficie en céréales a, sur la même période, pratiquement doublé (+ 85 %) dans le département du Cantal, elle a peu évolué dans le Lot.

- La pression agricole issue des élevages peut être approchée par le chargement en UGB/ha. Le calcul a été fait à partir des effectifs d’animaux fournis dans le RGA 2000. Etant donné que le recensement général agricole ne détaille pas les effectifs par type d’animaux et par classe d’âge, les équivalences moyennes suivantes ont été appliquées :
 - 1 bovin : 0,8 UGB, charge : 60 kg de N, 200 kg de DBO\(_5\) et 430 kg de DCO par an
 - 1 ovins-caprin : 0,15 UGB, charge : 7 kg de N, 55 kg de DBO\(_5\) et 118 kg de DCO par an
 - 1 porcin : 0,3 UGB, charge : 15 kg de N, 90 kg de DBO\(_5\) et 193 kg de DCO par an

4.2.2.1 Les chargements par sous bassin

Le graphique ci-dessous donne les valeurs de chargement par sous bassin et par espèce animale.

![Graphique de chargement par sous bassin](image)

Figure 30 : Chargement total par production animale et par sous bassin

Selon les données du RGA 2000, le nombre total de bovins, ovins, caprins et porcins présents sur le bassin s’élève à 84 600 UGB.

21 Prairies temporaires ou artificielles, prairies naturelles et landes productives et non productives.
22 Prairies naturelles et landes productives.
23 Se dit d’une terre qui peut être labourée et cultivée. Comprend les grandes cultures, les cultures maraîchères, les prairies artificielles et les terrains en jachère.
24 Il s’agit de données déclaratives liées à des demandes de primes et donc pas forcément exhaustives des surfaces réelles.
Les sous bassins ayant le chargement le plus élevé (> 1,8 UGB/ha) sont ceux de la Rance (les 3), du Bervezou, du Veyre, et de la partie amont du Célé (Source Célé, Célé-Ressègue, Célé-Aujou) ; ils sont situés sur le Ségala et la Châtaigneraie. Sur les autres sous bassins, l'élevage peut être considéré comme extensif.

Selon les données en notre possession\(^\text{25}\), sur le département du Lot les cheptels (en UGB) ovins/caprins et bovins auraient diminués respectivement de 17 et 31 % entre 2000 et 2006. Sur le même temps le cheptel bovin a augmenté de près de 2 % sur le département du Cantal et le cheptel ovin (pas de données pour les caprins) diminué de 21%. Globalement le chargement (ovin, caprin et bovin), aurait diminué de 27 % sur le département du Lot et augmenté de 4 % sur le département du Cantal. Au vu de ces données récentes il semble donc que la pression issue des élevages a tendance à augmenter sur la partie cantalien des bassin versant et à diminuer sur la partie lotoise.

4.2.2.2 Pression brute en azote organique

La pression en azote organique est représentative des quantités d'azote produites par les cheptels bovins, caprins, ovins et porcins. Il s'agit des quantités maîtrisables (fumier et lisier) et non maîtrisables (pâturage).

Dans les zones vulnérables, un plafond d'apport d'azote organique de 170 kg de N/ha/an sur la superficie épandable et les pâtures non épandables est imposé. Sachant que sur le bassin du Célé la majorité des terres sont des pâtures (52,25 % de STH), le plafond est globalement respecté.

Il faut toutefois signaler que sur le Ségala et la Châtaigneraie, les contraintes hydromorphologiques naturelles (réseau hydrographique très dense, pentes fortes) diminuent sensiblement les surfaces épandables, ce qui engendrer des contraintes dans la gestion des effluents d'élevage.

\(^{25}\) Sources des données : Lot: demandes de prime 2006, Cantal : base nationale d'identification bovine pour les bovins et demande de prime pour les ovins. Il s'agit de données déclaratives liées à des demandes de primes et donc pas forcément exhaustives des cheptels réels.
Par ailleurs, à ces quantités d’azote organique s’ajoutent les quantités d’engrais minéral. Même si les discussions avec les éleveurs montrent qu’ils prennent de plus en plus conscience de la valeur fertilisante de leurs effluents d’élevage et diminuent les quantités d’engrais minéral apportées, les apports globaux restent conséquents.

4.2.2.3 Charge en Azote, DBO5 et DCO

- **Charges brutes**

 De la même manière que l’on a estimé la charge en azote organique, on peut calculer la charge brute en DBO5 et DCO produite par les cheptels.

 Pour pouvoir comparer les charges agricoles aux charges domestiques, elles sont exprimées ici en kg par hectares totales des sous bassins et non plus en kg par hectare de SAU.

 ![Figure 32 : Charges brutes des cheptels par sous bassin](image)

 A nouveau, les sous bassins avec les plus fortes charges par hectare sont ceux situés sur la partie cantalienne du bassin. La basse vallée de la Rance et le haut bassin du Célé (Célé-Ressègue et Célé-Aujou) sont plus particulièrement touchés.

 Ainsi, les charges brutes dues aux élevages se révèlent jusqu’à 10 fois plus importantes que celles liées à l’assainissement domestique.

- **Charges nettes**

 Pour évaluer les charges nettes, il faut estimer la quantité de matière organique (N, P, K) consommée par les plantes (après épandage) mais également rejetée dans l’atmosphère (phase gazeuse), transformée ou détruite par certains traitements (filtres à macrophytes, compostage, …). Aucune étude applicable sur notre bassin ne permet de réaliser précisément ces calculs, c’est pourquoi, pour tenter de comparer les pressions nettes issues des différentes activités en place sur le bassin du Célé, nous avons considéré deux scénarii différents :
• 1ère simulation : par temps sec

99 % de la charge brute agricole est consommée ou traitée et seulement 1 % arrive au milieu (= charge nette).

La charge totale nette atteindrait 599 Kg de DBO5 par jour.

<table>
<thead>
<tr>
<th>paramètre</th>
<th>DBO5</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge totale arrivant au milieu en kg/jour</td>
<td>599</td>
<td>158</td>
</tr>
<tr>
<td>Charge totale arrivant au milieu en kg/ha/an</td>
<td>2,35</td>
<td>0,64</td>
</tr>
</tbody>
</table>

Tableau 61 : Estimation des charges nettes de l’agriculture par temps sec

• 2ème simulation : par temps de pluie

90 % de la charge brute agricole est traitée et 10 % arrive au milieu (= charge nette).

La charge totale nette atteindrait 6 000 Kg de DBO5 par jour.

<table>
<thead>
<tr>
<th>paramètre</th>
<th>DBO5</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge totale arrivant au milieu en kg/jour</td>
<td>5 999</td>
<td>1575</td>
</tr>
<tr>
<td>Charge totale arrivant au milieu en kg/ha/an</td>
<td>23.5</td>
<td>6.39</td>
</tr>
</tbody>
</table>

Tableau 62 : Estimation des charges nettes de l’agriculture par temps de pluie

La pression de l'agriculture est illustrée par les cartes 25 et 26.

4.2.2.4 Comparaison des pressions domestiques et agricoles

Les pressions brutes en DBO5 issues de l’agriculture et de l’assainissement domestique sont indiquées dans le tableau ci-dessous et illustrées sur la carte 27 par sous bassin. Elles sont évaluées de la façon suivante :
- à partir des cheptels bovins, ovins et porcins et de charges moyennes par type d’animaux pour l’agriculture ;
- à partir du nombre d'habitants non raccordés et de charges moyennes par habitant pour l’assainissement autonome ;
- à partir des charges mesurées en sorties des STEP ou calculées.

<table>
<thead>
<tr>
<th>paramètre</th>
<th>Agriculture</th>
<th>Assainissement collectif</th>
<th>Assainissement non collectif</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBO5</td>
<td>23 201.18</td>
<td>499.59</td>
<td>441.31</td>
<td>24 142.08</td>
</tr>
<tr>
<td>DCO</td>
<td>45 624.63</td>
<td>999.19</td>
<td>756.98</td>
<td>47 380.79</td>
</tr>
<tr>
<td>N</td>
<td>5 198.57</td>
<td>124.90</td>
<td>114.86</td>
<td>5 438.33</td>
</tr>
</tbody>
</table>

Tableau 63 : Comparaison des charges brutes domestiques et agricoles
D'après les calculs explicités ci-dessus l’agriculture apporte 96 % de la charge brute en DBO5. Vient ensuite l’assainissement collectif dont la charge brute est légèrement supérieure à celle de l’assainissement individuel.

Les cartes 28 et 29 modélisent les pressions agricoles et domestiques nettes selon deux calculs :

- 1ère simulation : par temps sec

La charge nette apportée par les systèmes d’assainissement collectifs (charge en sortie des STEP), est assez bien connue car régulièrement suivie. Pour la charge nette apportée par l’assainissement non collectifs et l’agriculture il convient d’appliquer des ratios d’abattement. Ainsi, il est proposé ici de prendre un pourcentage d’abattement de 75 % de la charge brute pour l’assainissement non collectif et de 99 % pour l’agriculture. Sur la base de ces estimations l’origine des charges nettes apportées au milieu serait la suivante :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Agriculture</th>
<th>Assainissement collectif</th>
<th>Assainissement non collectif</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBO5</td>
<td>2.35</td>
<td>0.21</td>
<td>0.91</td>
<td>3.6</td>
</tr>
<tr>
<td>DCO</td>
<td>5.05</td>
<td>0.90</td>
<td>1.58</td>
<td>8.17</td>
</tr>
<tr>
<td>N</td>
<td>0.64</td>
<td>0.23</td>
<td>0.24</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Tableau 64 : Comparaison des charges nettes domestiques et agricoles estimées par temps sec en kg/ha/an
• 2ème simulation : par temps de pluie

Par temps de pluie, les rejets liés aux systèmes d'assainissement collectifs ont été considérés équivalents à ceux enregistrés en période de temps sec si le réseau de collecte est séparatif ; mais largement supérieur si tout ou partie du réseau de collecte est unitaire ou mixte ou que le séparatif dysfonctionne (intrusion d'eaux parasites).

Pour les charges nettes estimées par temps de pluie il est donc proposé ici de prendre :
- les charges réellement mesurées en sortie de STEP pour les communes dotées d'un réseau séparatif,
- 80 % des charges en entrée des STEP pour les communes dotées d'un réseau mixte ou unitaire,
- 50 % des charges brutes pour l'assainissement non collectif,
- 10 % des charges brutes pour l'agriculture.

Avec ces ratios, on arrive aux résultats qui figurent dans le tableau et le graphe suivants (les charges organiques sont exprimées en DBO5).

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Agriculture</th>
<th>Assainissement collectif</th>
<th>Assainissement non collectif</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBO5</td>
<td>23.50</td>
<td>3.80</td>
<td>1.83</td>
<td>28.79</td>
</tr>
<tr>
<td>DCO</td>
<td>50.49</td>
<td>7.68</td>
<td>3.16</td>
<td>61.32</td>
</tr>
<tr>
<td>N</td>
<td>6.39</td>
<td>0.97</td>
<td>0.48</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Tableau 65 : Comparaison des charges nettes domestiques et agricoles estimées par temps de pluie en kg/ha/an

Compte tenu des faibles pressions industrielles non raccordées (5 entreprises seulement ne sont pas raccordées), ces chiffres n’apparaissent pas sur le tableau, car négligeables.

Figure 35 : Part des rejets agricoles et domestiques dans la charge totale en DB05 par temps de pluie (en T/an)

Conclusion : Attention, ces simulations sont basées sur des abattements théoriques et elles doivent être utilisées avec prudence. Elles ne sont bien entendu pas suffisamment précises pour être le reflet réel des pressions existantes sur le territoire. Elles permettent toutefois de donner des tendances et de confirmer que l'abattement des concentrations en matières organiques et en bactéries, nécessitera des actions dans tous les secteurs d'activité confondus et notamment dans les secteurs de l'assainissement non collectif et de l'agriculture. L'agriculture est l'activité économique principale du bassin, c'est de ce fait assez logique qu'elle génère potentiellement la plus forte pression sur les milieux.
D’après ces simulations c’est donc l’agriculture qui apporterait la charge organique nette principale, que ce soit par temps sec ou par temps de pluie.
L’assainissement non collectif représenterait la deuxième source de pollution organique par temps sec, par contre par temps de pluie l’assainissement collectif apporterait une charge plus importante.

4.2.3 Les produits phytosanitaires

Les résidus de pesticides présents dans l’eau proviennent en grande partie de l’activité agricole, mais aussi de l’entretien des fossés, des voies ferrées, des routes, des espaces verts et des jardins. Leur nature (association de molécules) et/ou leur concentration les rendent toxiques pour la flore et la faune aquatique et problématiques pour la production d’eau potable, la pratique des loisirs aquatiques.... Préalable indispensable aux actions de réduction et de suppression de ces produits, deux inventaires nationaux en cours visent à repérer la présence, dans les rejets et les milieux naturels, de plus de 200 substances dangereuses au rang desquels les pesticides figurent en bonne place. Ils permettront notamment d’élaborer des plans d’actions locaux dans le secteur agricole.

Nous possédons à l’heure actuelle très peu de données sur l'utilisation des produits phytosanitaires. Il semble, selon les données des chambres d’agricultures du Lot et du Cantal, que les produits phytosanitaires soient globalement peu utilisés sur le bassin du Célé. Les quelques mesures de concentrations en phytosanitaires réalisées sur les eaux superficielles et souterraines du territoire confirment cette impression. Compte tenu de la surface assez importante en céréales (maïs notamment) sur la basse vallée du Célé, cette partie du bassin est classée prioritaire pour la lutte contre les pesticides dans le programme de mesure de la DCE.

Selon le diagnostic agricole (Chambres d’Agriculture du Cantal et du Lot - 2000), 90 % des prairies ne reçoivent pas du tout de traitement phytosanitaire. Ces surfaces non traitées représentent presque 80% de la SAU. 10 % des prairies sont désherbées, les doses utilisées sont de l’ordre de 20 gr/ha ou 2L/ha.

Les traitements sur les céréales à paille sont plus fréquents et comprennent, en général, un traitement fongicide au stade montaison et un désherbage au stade 3 feuilles en novembre. Sur l’orge, un traitement est fait en novembre contre la jaunisse nanissante (0,25 L/ha).

Les semences sont aussi traitées, généralement au Real (Triticonasol) ou au Celest Gold (Fludioxonil), pour assurer une sécurité jusqu’à la montaison.

Sur la partie cantalienne, les traitements seraient moins nombreux : 1 désherbage entre février et avril et pas de traitement fongicide.

Sur le maïs, les traitements consistent en un désherbage au pré-semis (5 à 7 L/ha selon les produits), un traitement des semences contre les ravageurs (Gaucho) et un traitement au carbofuran contre les taupins.

Les bords de cours d’eau et de fossé sont parfois désherbés chimiquement, mais ces pratiques non réglementaires ne sont pas quantifiées.

Sources : Diagnostic Agricole - Chambres d’Agriculture du Lot et du Cantal, 2000
Pollution d’origine agricole : à retenir !

La topographie, le contexte pédoclimatique ont favorisé le développement de l’élevage sur le bassin versant du Célé qui reste l’activité économique principale du secteur. Compte tenu du nombre d’UGB sur le territoire, les effluents d’élevage représentent une charge brute en azote, en DBO5 et en germes importante. En effet, l’agriculture apporte la majeure partie de la charge organique brute (DBO5) et certainement nette (résultats des deux simulations réalisées). L’agriculture est donc une source potentielle importante de contamination bactériologique sur le bassin du Célé (voir cartes 27, 28 et 29) et plus particulièrement sur les sous bassins du Ségala et de la Châtaigneraie, où les chargements sont les plus élevés et ont tendance à augmenter.

Cependant il convient d’être prudent sur ces résultats car les simulations proposées sont basées sur des pourcentages théoriques. Les abattements issus des systèmes d’assainissement individuels et de l’épandage agricole (part de nutriments consommés par les plantes, temps de séjour avec action du soleil et des micro-organismes avant arrivée dans le réseau hydrographique superficiel) sont en effet difficilement quantifiables.

L’utilisation de produits phytosanitaires semble modérée, mais plus importante en basse vallée du Célé (maïs). Une mauvaise maîtrise des doses employées ou une mauvaise localisation (bord de cours d’eau) peut provoquer des dépârs, alors problématiques pour les milieux naturels et par ricochet pour certains usages (AEP...).

4.3 Abreuvement du bétail

4.3.1 Les pratiques d’abreuvement

Dans le cadre du Diagnostic Agricole, il a été estimé par la profession agricole que 80 à 90 % des parcelles en bord de cours d’eau sur le Ségala et la Châtaigneraie, étaient en prairies pâturées et que les animaux accédaient directement au cours d’eau dans environ 80 % des cas.
Les bovins sont à l’extérieur d’avril à fin octobre. Toutefois il arrive, en Châtaigneraie notamment, que la période de pâturage aille jusqu’à fin novembre ou que certaines bêtes restent sur les parcelles presque toute l’année. Les vaches allaitantes ou laitières sont rentrées en stabulation la moitié du temps (traite, nuit).
Malgré ces informations, l’évaluation de la pollution due à l’abreuvement direct des animaux aux cours d’eau est délicate. Il est d’une part difficile d’évaluer le temps réellement passé au contact du cours d’eau et d’autre part la charge apportée par lessivage (pluies orageuses) des pâtures. Ces deux éléments conditionnent la charge organique et bactérienne apportée au milieu.

analyses ont révélé une contamination systématique des eaux au point d’accès et très fréquente à l’aval immédiat. En fonction de la taille du troupeau et du débit du cours d’eau, les concentrations bactériennes mesurées se sont parfois révélées plus de 1 000 fois supérieures aux normes sanitaires conseillées pour l’abreuvement du bétail.

Dans le cadre du Programme agricole du contrat de rivière Célé (cf. paragraphe 4.6.4), des systèmes d’abreuvement permettant l’alimentation en eau du bétail à partir de ressources naturelles (cours d’eau, sources, forage...), tout en préservant les milieux aquatiques, ont été financées à 70 %.

Un guide technique pour la mise en place de ces systèmes a de plus été édité. Tiré en 2100 exemplaires il a déjà été envoyé à la moitié des agriculteurs du territoire.

4.3.2 Les prélèvements d’eau pour l’abreuvement

Le PGE évalue les prélèvements pour l’élevage à 7 300 m3/j soit 1 120 000 m3 pendant l’étiage. Ce calcul se fonde sur le recensement du cheptel dans le RGA 2000 affecté des ratios d’abreuvement moyens suivants:
- caprins : 5 L/j/animal
- ovins : 7,5 L/j/animal
- veaux de 3 à 4 mois : 16,5 L/j/animal
- gros bovins: 60 L/j/animal
- porcins : 16,5 L/j/animal

Ces valeurs sont proches des données en notre possession.

Dans le cadre du PGE, l’abreuvement des animaux n’a pas été pris en compte pour évaluer l’impact des usages sur les prélèvements. Les auteurs considèrent en effet qu’une part de l’abreuvement est comptée dans les prélèvements AEP. Compte tenu de nos connaissances des pratiques d’abreuvement sur le territoire et des volumes concernés, il nous a semblé important d’intégrer le volume consommé dans le bilan des consommations (voir carte 13).

Le nettoyage des bâtiments constitue un autre poste de consommation. La consommation d’eau par litre de lait produit est estimée entre 3 à 6 litres en laiterie et 10 à 15 litres en salle de traite. Pour les porcs, l’Institut Technique du Porc retient un ordre de grandeur de 12 m3/jour pour un élevage de 100 truies mères. Cependant, ces consommations sont difficiles à évaluer et les contraintes sanitaires font qu’elles sont généralement comprises dans les prélèvements AEP.

Abreuvement du bétail : à retenir !

On estime que sur le bassin du Célé l’abreuvement se fait directement au cours d’eau sur environ 70 % des parcelles en bord de cours d’eau. Cette pratique peut provoquer une contamination bactériologique des eaux et une dégradation des milieux rivulaires. Des actions d’accompagnement à la mise en place de systèmes d’abreuvement hors cours d’eau ont été menées dans le cadre du Contrat de rivière Célé (cf. p.185). 35 exploitants y ont souscrit et vont aménager près de 200 points d’abreuvement au pâturage.

Les prélèvements d’eau pour l’abreuvement (qu’ils soient directs ou prélevés sur le réseau AEP) représentent 45 % des prélèvements nets totaux à l’étiage (juin à octobre). Ils sont plus importants que les prélèvements liés à l’irrigation (cf. p.179) et doivent être pris en compte dans toute action sur l’amélioration de la gestion des débits minimums des cours d’eau et des nappes. Compte tenu de l’augmentation du cheptel sur le Cantal, ces besoins vont par ailleurs probablement croître.
4.4 L’Irrigation

D’après le diagnostic agricole réalisé par les Chambres d’Agriculture, le pourcentage d’exploitations qui a la possibilité d’irriguer augmente d’est en ouest. Plus de 30% des exploitations en 2000 irriguaient sur les sous bassins du Causse et du Limargue, et moins de 10% sur la Châtaigneraie.

Les pompages se font à plus de 80% directement en rivières sur toute la partie lotoise. Au niveau de la Châtaigneraie, 73 % des prélèvements d’irrigation s’effectuent à l’inverse à partir de retenues collinaires, remplies grâce à la ressource en eau hivernale, et utilisées durant l’été. A noter par ailleurs, dans le Cantal, le maintien ponctuel d’une technique d’irrigation des prairies pâturées ou de fauche qui consiste à inonder les parcelles à partir d’une retenue au fil de l’eau et de canaux d’irrigation à ciel ouvert.

La principale culture irriguée est le maïs, mais, dans la vallée du Célé, toutes les cultures spécialisées (tabac, fraises, asperges) sont elles aussi irriguées durant la période estivale. Par ailleurs, il y aurait une tendance, renforcée par les épisodes de sécheresse de ces dernières années, au développement de cette pratique pour la sécurisation des cultures fourragères en montagne. La période d’irrigation s’échelonne de juin à août.

4.4.1 Surfaces irriguées

Les données d’irrigation sont présentées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Sous bassin</th>
<th>Surfaces irriguées en ha</th>
<th>% des surfaces irriguée / terres arables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basse du Célé</td>
<td>364</td>
<td>4,4 %</td>
</tr>
<tr>
<td>Drauzou</td>
<td>97</td>
<td>4,2 %</td>
</tr>
<tr>
<td>Célé-St Perdoux</td>
<td>74</td>
<td>7,5 %</td>
</tr>
<tr>
<td>Bervezou</td>
<td>40</td>
<td>1,9 %</td>
</tr>
<tr>
<td>Célé-Enguirande</td>
<td>77</td>
<td>8,7 %</td>
</tr>
<tr>
<td>Veyre</td>
<td>123</td>
<td>3,9 %</td>
</tr>
<tr>
<td>Célé-Aujou</td>
<td>74</td>
<td>5,5 %</td>
</tr>
<tr>
<td>Rance-Arcambe</td>
<td>146</td>
<td>7,8 %</td>
</tr>
<tr>
<td>Anès</td>
<td>12</td>
<td>1,7 %</td>
</tr>
<tr>
<td>Gorges Rance</td>
<td>18</td>
<td>3 %</td>
</tr>
<tr>
<td>Source Célé</td>
<td>20</td>
<td>1,6 %</td>
</tr>
<tr>
<td>Moulègre</td>
<td>31</td>
<td>1,6 %</td>
</tr>
<tr>
<td>Source Rance</td>
<td>49</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Célé-Ressègue</td>
<td>77</td>
<td>2,9 %</td>
</tr>
</tbody>
</table>

Tableau 66 : Surfaces irriguées par sous bassin versant
Source: Chambres d’Agriculture du Lot et du Cantal, Diagnostic agricole - 2000
Le pourcentage de surface irriguée est important sur les sous bassins Célé-St Perdoux, Célé-Enguirande, Rance-Arcambe. Le pourcentage de 4,4 % indiqué en basse vallée du Célé n’est pas révélateur des pratiques réelles, les parcelles situées sur le Causse ne pouvant pas être irriguées. Si l'on prenait en compte les surfaces proches du Célé (seul cours d'eau de ce secteur) ou encadrées par les falaises du Causse, ce pourcentage serait nettement supérieur et dépasserait de loin les 8,7 % du sous bassin Célé-Enguirande. L'irrigation sur le sous bassin Célé-Enguirande s’effectue principalement à partir de la retenue d’Enguirande.

Les surfaces irriguées les plus importantes se retrouvent donc sur toute la vallée du Célé ainsi que sur le Drauzou, le Veyre, la Rance. Il s’agit de secteurs où l’irrigation se fait principalement par pompage directement en cours d’eau.

Une enquête a été menée en 2003, par la Chambre d’Agriculture du Lot, sur les pratiques d’irrigation dans les vallées du Célé et du Drauzou. Il en ressort que les prélèvements agricoles pour l’irrigation ne paraissent pas excessifs. Du fait du morcellement des parcelles les exploitations irriguent en général une faible proportion de leur SAU. Selon cette enquête, le volume global demandé ne devrait pas évoluer. Un travail sur l'organisation des prélèvements devrait suffire à gérer les périodes de crise. Ainsi, en 2003 la mise en place de tours d'eau a été organisée avec les informations recueillies lors de ces enquêtes.

4.4.2 Volumes prélevés

<table>
<thead>
<tr>
<th></th>
<th>Eaux sup.</th>
<th>Nappes d’accomp.</th>
<th>Eaux sout.</th>
<th>Réserves</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Débit autorisé (m³/h)</td>
<td>3 120</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>3 215</td>
<td>100%</td>
</tr>
<tr>
<td>Total Surface irriguée (ha)</td>
<td>536</td>
<td>24</td>
<td>-</td>
<td>599</td>
<td>1 159</td>
<td>100%</td>
</tr>
<tr>
<td>Total Volume autorisé (m³)</td>
<td>961 988</td>
<td>42 630</td>
<td>-</td>
<td>1 078 950</td>
<td>2 083 568</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tableau 67 : Prélèvements autorisés pour l’Irrigation

Sources : Plan de Gestion des Etiage

Le volume des prélèvements autorisés sur les 5 mois d’étiage (hors réserve) est donc de 1 004 618 m³ d’eau, soit :

- en lissant cette valeur sur les 5 mois d’étiage : 0,076 m³/s (6,4 % des débits objectifs d’étiage) hors prélèvements pour l’élevage et 0,16 m³/s (13,4 % des débits objectifs d’étiage) prélèvements pour l’élevage compris

- en répartissant seulement sur 3 mois (juin, juillet, août) : 0,13 m³/s (10,8 % des débits objectifs d’étiage) hors prélèvements pour l’élevage et 0,21 m³/s (17,5 % des débits objectifs d’étiage) prélèvements pour l’élevage compris

Cependant, le volume autorisé ne donne aucune information sur le volume réellement prélevé. Il fixe un maximum qui n'est jamais atteint. Pour avoir une donnée plus précise, le bureau d'études Eaucéa (PGE) a réalisé une simulation tenant compte de la pluviométrie, de la réserve en eau des sols, et d’une consommation agronomique optimale de maïs grain affectée d’un coefficient 0,5. Avec cette simulation le volume consommé à l’étiage en 2003 est estimé à 636 000 m³, ce qui semble cohérent avec les données issues des déclarations. Sur cette base, l’impact des prélèvements à l’étiage (5 mois) correspondrait à 0,048 m³/s soit 4 % du DOE. Si l’on ajoute les prélèvements liés à l’élevage, on atteindrait 0,13 m³/s soit 11 % du DOE.

Des disparités importantes étant perceptibles entre les sous bassins, l’impact de ces prélèvements potentiels sur les débits d’étiage fluctue. En effet il peut s’avérer important sur des zones localisées (plusieurs prélèvements à la suite sur une courte distance et sur un cours d’eau faiblement alimenté) alors qu’il paraît globalement acceptable à l’échelle du bassin. Point positif : les prélèvements les plus importants sur la rivière sont concentrés en basse vallée du Célé, là où les quantités d’eau sont les plus importantes, le Célé ayant bénéficié des apports de la partie amont du bassin.

<table>
<thead>
<tr>
<th>Lieu</th>
<th>Volume prélevé en m3/an (mesures 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anès</td>
<td>5 233</td>
</tr>
<tr>
<td>Bervezou</td>
<td>1 504</td>
</tr>
<tr>
<td>Basse vallée du Célé</td>
<td>188 375</td>
</tr>
<tr>
<td>Célé – St Perdoux</td>
<td>15 831</td>
</tr>
<tr>
<td>Célé - Enguirande</td>
<td>52</td>
</tr>
<tr>
<td>Célé - Aujou</td>
<td>15 451</td>
</tr>
<tr>
<td>Célé - Ressègue</td>
<td>18 404</td>
</tr>
<tr>
<td>Drauzou</td>
<td>13 337</td>
</tr>
<tr>
<td>Moulègre</td>
<td>7 888</td>
</tr>
<tr>
<td>Rance - Arcambe</td>
<td>95 480</td>
</tr>
<tr>
<td>Gorges Rance</td>
<td>336</td>
</tr>
<tr>
<td>Source Célé</td>
<td>708</td>
</tr>
<tr>
<td>Source Rance</td>
<td>1 331</td>
</tr>
<tr>
<td>Veyre</td>
<td>38 225</td>
</tr>
<tr>
<td>TOTAL</td>
<td>402 157</td>
</tr>
</tbody>
</table>

Tableau 68 : Volumes mesurés des prélèvements en eau superficielle pour l’irrigation

Sources : AEAG – redevance 2004

Les prélèvements totaux en eaux superficielles pour l’irrigation (hors retenues) recensés par l’Agence s’élevaient donc en 2004 à 402 157 m3. Ce volume est inférieur à celui estimé par le PGE. Cette différence peut en partie s’expliquer par le fait que les calculs du PGE ont été faits sur l’année 2003 qui a été une année de grande sécheresse. De plus les petits irrigants ne sont pas soumis à redevance, les volumes prélevés par ceux-ci ne sont pas comptabilisés dans le tableau 68.

Les volumes déclarés confirment les analyses précédentes : 47 % des prélèvements d’eau pour l’irrigation sont réalisés sur la basse vallée du Célé, où les surfaces irriguées sont les plus importantes. Les volumes prélevés sont aussi importants sur le sous bassin du Veyre.

Sur la partie Cantalienne du bassin 73 % des prélèvements pour l’irrigation se font à partir de retenues collinaires, les prélèvements en eaux superficielle sont donc faibles. Sur la commune de Maurs il y a toutefois un prélèvement en rivière important.

L’irrigation : à retenir !

Le PGE juge les prélèvements agricoles pour l’irrigation peu pénalisants pour les milieux puisqu’ils auraient peu d’incidence sur les débits objectifs d’étiage. Toutefois, sur certains petits cours d’eau, des prélèvements relativement faibles peuvent, s’avérer problématiques à l’étiage lorsqu’ils sont cumulés.

Sur la Rance (cours d’eau déficitaire) une action visant à diminuer les volumes prélevés pour l’irrigation est recommandée dans le PGE. Un doute quant à l’efficacité de cette mesure persiste toutefois compte tenu du fait que les prélèvements d’eau sur la Rance et son amont s’effectuent principalement au moyen de retenues collinaires.
4.5 L'aménagement de l'espace

4.5.1 Le Drainage

Rappel de la définition d'une zone humide : L'article 211-1 du code de l'environnement, qui instaure l'obligation légale de protection des zones humides, les définit comme « terrains, exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre, de façon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l'année ».

Les parcelles sont drainées dans un souci d'assainissement (limitation du développement des parasites et pathologies) pour le pâturage et de réorganisation spatiale (mécanisation des parcelles).

La Loi sur l'Eau (n° 92-3, 3 Janvier 1992) réglemente les travaux de drainage et d'assainissement. Ainsi, tout drainage ou assainissement est soumis à déclaration pour des surfaces comprises entre 20 et 100 ha et à autorisation pour des surfaces supérieures à 100 ha. Cependant, quand ces travaux concernent l'assèchement d'une zone humide, les seuils sont respectivement abaissés à 0,1 ha et 1ha.

Le RGA 2000 estime à 2 195 ha (soit 1,76% du bassin du Célé) la surface drainée par drain enterré. La superficie drainée aurait augmenté de 9 % entre 1988 et 2000. Ces chiffres sont toutefois probablement sous évalués du fait des secrets statistiques et des drainages non déclarés. De plus les drainages superficiels sont plus courants et ne sont pas comptabilisés dans cette surface.

Le drainage d'une zone de plus de 1 hectare, qu'il soit superficiel ou souterrain, doit faire l'objet d'une autorisation de la DDAF. Les DDAF ont enregistré 53 demandes de drainage en 2005, dont 36 sur le Cantal. La superficie drainée sur le département du Lot en 2005 est de 6,6 ha.

Les seuils sont cumulatifs c'est-à-dire que plusieurs déclarations successives peuvent conduire à une autorisation. Par contre les drainages de moins de 0,1 ha ne peuvent être suivis car ils ne sont soumis à aucune formalité administrative.

Les travaux de drainage ne bénéficient plus d'aides financières depuis 1999 mais la plupart s'avèrent directement réalisables par les exploitants, sans aide publique.

L'étude sur les zones humides en cours a confirmé que la pression de drainage est encore très forte sur les têtes de bassin (affluents du Célé et de la Rance) du Ségala et de la Châtaigneraie et que de nombreuses surfaces d'intérêt patrimonial ou hydrologique sont menacées. Au cours de rencontres avec les exploitants agricoles, certains ont montré un changement de point de vue sur les prairies humides. Les étés secs de 2003 et 2005 ont révélé aux exploitants l'intérêt de conserver ces zones qui restent productives lorsque toutes les autres surfaces sont asséchées. Cependant, les exploitants agricoles ont peu d'intérêt direct à conserver les petites zones humides (difficiles à valoriser) qui peuvent pourtant présenter un intérêt hydrologique ou biologique certain (ex : tourbière).

4.5.2 Autres pratiques d'aménagement de l'espace

Certaines pratiques agricoles peuvent avoir des répercussions négatives sur les milieux naturels et la qualité des eaux :

- **Les suppressions de haie, notamment à l'occasion d'opérations de remembrement.**
 Les haies ont de multiples fonctions environnementales. En effet, elles constituent un obstacle physique qui diminue la vitesse des ruissements ainsi que celle du vent, limitant ainsi le transport des particules solides (limons et sables), des éléments fertilisants et des matières actives (objectifs lutte contre l'érosion et qualité des eaux). Le réseau racinaire dense, puissant et profond des ligneux composant la haie remonte les éléments minéraux ayant migré en profondeur (objectif protection de l'eau), favorise l'infiltration des eaux en excès et stabilise le sol (objectifs lutte contre les risques naturels et lutte contre l'érosion). Leur suppression peut donc favoriser l'érosion des sols et le départ...
d'éléments fertilisants et de matières en suspension dans les cours d'eau. Nous n'avons à ce jour pas de données chiffrées sur ces opérations, elles semblent avoir été nombreuses sur le Ségala et la Châtaigneraie à l'époque des derniers remembrements et être plus ponctuelles aujourd'hui.

- Les défrichements de parcelles forestières pour passage en terre agricole et les remplacements de prairies par des cultures

Le retournement de pelouses sèches sur le Causse pour implantation de cultures est aussi une pratique problématique pour la préservation des milieux naturels. Cette action entraîne en effet la destruction d'un habitat d'intérêt communautaire mais provoque aussi une démobilisation des nitrates piégés dans le sol. Les cultures implantées réclament de plus de nouveaux intrants, qui migrent pour partie dans le sous sol très perméable.

Les défrichements sont abordés dans la partie 4.7.

Aménagement de l’espace : à retenir !

Pour des raisons techniques, le drainage s’est fortement pratiqué au cours de la dernière décennie, mais suite aux sècheresses récentes, l'intérêt de conserver des zones humides qui peuvent s'avérer productives en période de sécheresse, semble avoir ponctuellement refait surface.

Une étude d'inventaire des zones humides est en cours sur le bassin du Célé, elle devrait donner naissance à divers programmes de gestion de ces milieux.

Les services de l'état sont en train de mettre en place une politique stricte vis-à-vis des opérations de drainage, toutefois les drainages de moins de 0,1 ha ne sont par contre à ce jour soumis à aucune formalité administrative.

D'autres opérations d'aménagement de l'espace telles que les défrichements, les suppressions de haies ou la mise en culture de parcelles en pente peuvent avoir des répercussions négatives sur les milieux aquatiques, et particulièrement sur la turbidité des eaux. Il est difficile de quantifier la suppression de haies et la mise en culture de prairies, mais, de l'avis des usagers et des techniciens, ces opérations se développeraient sur le Ségala et la Châtaigneraie. Les défrichements sont, eux, soumis à autorisation. Les services de l'état disposent de peu d'outils pour les refuser. Ils ont été conséquents sur la Châtaigneraie entre 1990 et 2002 (diminution de 7% du taux de boisement).
4.6 Les évolutions du secteur agricole en cours

Les politiques de soutien de l’agriculture en faveur de modes de production durables se développent depuis quelques années. Dans le même temps l’opinion publique montre du doigt certains effets néfastes de l’agriculture et demande une modification des pratiques.

4.6.1 Les nouvelles réglementations

Sur le bassin versant du Célé, dans sa partie lotoise, 25 communes sont incluses dans la zone vulnérable, non pas en raison de réels problèmes au niveau de la teneur en nitrates des eaux superficielles et souterraines mais à cause d’un milieu très sensible (sous-sol karstique).

- La loi sur l’eau de 1992 instaure le principe pollueur-payeur. Le secteur agricole comme les autres secteurs d’activité, est soumis à ce principe.

- L’éco-conditionnalité de la Politique Agricole Communauté (PAC). Les accords du Luxembourg, du 26 juin 2003, relatifs à la réforme de la PAC entérinent définitivement le principe de la conditionnalité selon lequel l’attribution des aides sera dorénavant subordonnée au respect de 19 directives en matière d’environnement, de bien être et de santé animale ainsi que de sécurité alimentaire. A ces 19 directives (conditionnalité réglementaire), s’ajoutent également une liste de Bonnes Conditions Agricoles et Environnementales (BCAE) ainsi que l’obligation de maintenir des surfaces en prairies permanentes au 31/12/2003. D’un point de vue environnemental, il faudra respecter 5 directives et une liste d’actions visant à maintenir les terres dans de bonnes conditions agricoles et environnementales. L’application de ces réglementations est encouragée par des programmes d’incitation nationaux.

4.6.2 Les programmes d’incitation nationaux

4.6.2.1 Le Programme de Maîtrise des Pollutions d’Origine Agricole (PMPOA)

Le PMPOA est un programme de mise aux normes des bâtiments d’élevage et de gestion des effluents d’élevage mis en place par l’Etat, l’Agence de l’Eau et la profession agricole.

Deux programmes se sont relayés :

- Le PMPOA I a été lancé le 8 octobre 1993, il s’est concentré sur les exploitations de plus de 90 UGB (effectifs 1993). Il s’est achevé en 2003.
- Le PMPOA II aussi appelé Programme de Maîtrise des Pollutions Liées aux Effluents d’Élevage (PMPLEE) lui a succédé 2 ans plus tard. Les élevages éligibles étaient ceux situés en zone vulnérable au titre de la directive nitrate (25 communes de la basse vallée du Célé, cf. carte 30), ou ceux soumis à autorisation au titre de la réglementation relative aux Installations Classées et les élevages bovins soumis à déclaration et possédant plus de 90 UGB ou 70 pour les Jeunes Agriculteurs, hors zone vulnérable.
Depuis le début des deux programmes, sur le bassin du Célé, 208 dossiers ont été déposés, 76 dans le Cantal (49 dossiers PMPOA I et 27 PMPOA II) et 132 dans le Lot (31 dossiers PMPOA I et 101 PMPOA II). 10,5 % des exploitations du territoire ont donc participé à ces programmes. Le PMPOA II devait se terminer en décembre 2006, mais un délai de 6 mois supplémentaires a été accordé pour l'instruction des dossiers.

4.6.2.2 Les aides à la modernisation des bâtiments d'élevage

Le Plan Bâtiment vient compléter le PMPOA pour les éleveurs qui ont un projet de modernisation de leurs bâtiments d'élevage en parallèle de la mise aux normes. C'est un plan de modernisation des élevages cofinancé par la Région, l'Etat et l'Union Européenne qui vise à conforter les exploitations sur le plan économique dans le contexte de la réforme de la PAC. Il a été mis en place par arrêté ministériel du 03 janvier 2005.

Ce plan s'adresse à tous les éleveurs de bovins, ovins et caprins situés sur l'ensemble du territoire. Les investissements élégibles sont en lien direct avec l'activité d'élevage et concernent la rénovation, l'extension ou une construction neuve. Il permet de financer les projets de logement des animaux, les constructions nécessaires à l'élevage (salle de traite, stockage fourrage, aire d'exercice, équipements spécifiques), les équipements de contention et les aménagements et équipements fixes.

Selon les données en notre possession 89 dossiers Plan Bâtiment (5,3 % des exploitations du territoire) ont été financés ou sont en cours sur le bassin du Célé, 76 dans le département du Cantal et 13 dans celui du Lot. Toutefois ces données sont sous estimées, le nombre de dossiers du Lot pour la période 2000-2005 ne nous ayant pas été communiqué. Ces dossiers sont souvent associés à un dossier PMPOA pour la partie mise aux normes.

4.6.3 Les outils contractuels

4.6.3.1 Les Contrats Territoriaux d'Exploitation (CTE)

Les CTE, mis en place par la loi n°99-574 du 9 juillet 1999, constituaient la déclinaison française de la politique de développement rural européenne. Le CTE est un contrat entre l'Etat et l'agriculteur qui s'engage à développer une activité génératrice de valeur ajoutée qui contribue à la production agricole, mais aussi à la protection et à la gestion des ressources naturelles, des paysages... L'Etat s'engage en contrepartie à verser une participation financière à l'agriculteur pendant la durée du contrat.

En 2000 le bassin du Célé comptait 428 CTE, dont 122 sur les Causses, 70 en Limargue et 238 sur le Ségaia et la Châtaigneraie. Plus de 25 % des exploitants du territoire se sont donc engagés dans ces contrats. Ils couvraient une superficie de 25 013 ha, soit 20 % du territoire. Les départements du Lot et du Cantal comptent parmi les départements où le pourcentage d'exploitations ayant signé un CTE est le plus fort (plus de 15 %) ; par contre les coûts moyens par CTE de ces deux départements (moins de 38 000 € par contrat) sont plus faibles que la moyenne nationale (44 000 € par contrat).

En 2001, l'Association pour l'Aménagement de la Vallée du Lot a élaboré, en collaboration avec les ADASEA du lot et du Cantal, un projet de CTE collectif sur le bassin du Célé. Le dossier a été validé par les partenaires techniques mais avant que ce projet ait été mis en œuvre, les CTE ont été supprimés à l'échelle nationale et remplacés par les Contrat d'Agriculture Durable.

4.6.3.2 Les Contrats d'Agriculture Durable

Les CAD ont été lancés fin 2003 par le décret n° 2003-675 du 22 juillet 2003. Ils conservaient la logique contractuelle des CTE mais la démarche était simplifiée. Une autre différence importante était l'obligation de respecter une moyenne départementale de 27 000€ par contrat. Enfin, les CAD se
caractérisaient par un recentrage sur les problématiques environnementales prioritaires.

Trente dossiers CAD (0,7 % des exploitants) ont été montés sur le territoire du bassin du Célé. Les mesures les plus souscrites étaient la gestion extensive des prairies, le compostage des effluents d'élevage, et l'entretien de haies.

Le faible nombre de CAD souscrits est lié au fait que les financements CAD ont rapidement été remis en question. L'enveloppe budgétaire allouée était commune avec la Prime Herbagère Agri-Environnementale (PHAE). Cette aide, qui encourage le maintien d’un mode de production ou le nombre d’Unité de Gros Bovins (UGB) par hectare est faible, est très demandée sur le territoire. Les fonds restant pour les CAD ont donc été réduits.

Compte tenu des règles en vigueur, en matière d'accompagnement financier du dispositif CAD (plafonnement à 50 % des aides accordées par les collectivités locales, les établissements publics et l'Etat pour les investissements), l'Association pour l'Aménagement de la Vallée du Lot et ses partenaires ont conçu un programme agricole intégrant le dispositif CAD pour les mesures annuelles et complétant ce dispositif par un programme d'aides aux investissements, hors CAD.

4.6.4 Le Programme Agricole du Contrat de rivière Célé

Cette opération, destinée aux agriculteurs du bassin versant du Célé, comprenait :
- **des aides allant jusqu'à 70 % pour les travaux d'amélioration de la gestion des effluents d'élevage et de mise en place de systèmes d'abreuvement au pâturage.** Ces investissements avaient pour objectif de supprimer tout risque de contamination bactériologique accidentelle (lessivage de sols...) ou régulière (rejet permanent) des eaux de surface ou souterraines.
- **des aides à la mise en place de mesures agro-environnementales annuelles** visant à limiter les apports de germes (bactéries, champignons, virus) et de matières en suspension aux cours d'eau, et à inciter les exploitants à participer à la gestion des berges et des milieux aquatiques.
- **un accompagnement personnalisé** assuré par les Chambres d'Agriculture, les ADASEA, le Contrat de rivière et les structures partenaires (communauté de communes).

Cette démarche était basée sur le volontariat des exploitants agricoles. Afin de renforcer son impact sur la qualité de l'eau et des milieux aquatiques, **les agriculteurs souhaitant bénéficier d'aides devaient s'engager à** :
- Réaliser un diagnostic agri-environnemental préalable ;
- Implanter ou maintenir une bande enherbée sur toutes les parcelles en bord de cours d'eau, et bloquer l'accès des animaux aux cours d'eau durant les périodes de pâturage ;
- Mettre en place ou poursuivre des pratiques de fertilisation raisonnée sur l'ensemble de l'exploitation ;
- Respecter les Bonnes Pratiques Agricoles Habituelles sur l'ensemble de l'exploitation, et notamment être aux normes ou s'engager à l'être.

Par ailleurs les aides ont été ciblées, dans un premier temps, sur une zone d'action prioritaire.
Plusieurs outils de communication ont été créés afin d'informer les exploitants agricoles :
- Une plaquette générale de présentation du programme agricole (2000 exemplaires) ;
- Des fiches techniques sur les actions financées (1000 exemplaires) ;
- Un guide technique sur les systèmes d'abreuvement hors cours d'eau (2100 exemplaires).

En complément de ces documents, neufs réunions à destination des agriculteurs ont été organisées, pour les informer des objectifs, du contenu et des modalités d'aide et d'inscription au programme. Ces réunions étaient animées par le Contrat de rivière Célé, et co-animées par les Chambres d'Agriculture et les ADASEA. 150 agriculteurs ont participé à ces réunions.

Cinquante trois dossiers de demande de subvention pour la réalisation d'investissements ont été validés en 2005 et 2006. Cela représente 6,5 % des exploitants de la zone prioritaire. Si les engagements pris par les exploitants sont respectés, le Programme Agricole Célé aura permis la réalisation de plus de 1 720 000 € de travaux d'amélioration des conditions de stockage des effluents d'élevage et de mise en place de systèmes d'abreuvement hors cours d'eau. Pour réaliser ces investissements près de 918 000 € d'aide ont été accordés par l'Agence de l'Eau Adour Garonne et les Conseils Régionaux Auvergne et Midi-Pyrénées.

La carte 30 compare par commune le nombre de dossiers de candidature à un programme agricole (PMPOA, Plan bâtiment et Programme agricole Célé) au nombre total d'exploitation.

4.6.5 Les démarches de conseil

Les outils destinés à aider les exploitants agricoles à modifier leurs pratiques, notamment de fertilisation, se développent.

4.6.5.1 Suivi agronomique

Les Chambres d'Agriculture assurent des formations à la fertilisation raisonnée (suivis agronomiques), notamment pour les agriculteurs qui participent au Plan Bâtiment, au PMPOA ou au Programme Agricole Célé.

4.6.5.2 Plan d’épandage

Le plan d’épandage est un document de synthèse qui définit, en fonction de leur aptitude à l’épandage, les îlots culturaux qui pourront faire l’objet d’épandage d’effluents organiques. Les surfaces épandables sont définies en fonction de différents critères :
- distances par rapport aux habitations, aux rivières ;
- pentes : il est interdit d’épandre des effluents sur des pentes non mécanisables.

Sur le bassin versant du Célé 177 exploitations sont "équipées" d’un plan d’épandage (77 dans le Cantal et 100 dans le Lot). Dans le cadre du Programme Agricole Célé, 6 exploitants (5 dans le Lot, 1 dans le Cantal) vont réaliser un plan d’épandage.
Les évolutions du secteur agricole en cours : à retenir !

Les programmes nationaux (PMPOA, Plan bâtiment) ou locaux (Programme agricole Célé) en cours ou terminés devraient permettre de réduire l’impact de l’agriculture sur les milieux aquatiques. Compte tenu des recoupements (un exploitant peut participer à plusieurs programmes), on peut estimer que 15 % des exploitants du territoire se sont engagés dans un de ces programmes. Les efforts réalisés dans le cadre du programme agricole notamment mériteraient d’être poursuivis.

Les mesures agri-environnementales annuelles, ont également été bien souscrites sur le territoire puisque 26 % des exploitants se sont engagés dans un CAD ou dans un CTE.

Enfin certains outils tels que le suivi agronomique ou le plan d’épandage, qui permettent une modification progressive des pratiques de fertilisation, commencent à se développer.

4.7 La sylviculture

4.7.1 Evolution des surfaces forestières

Selon les données des CRPF Auvergne et Midi-pyrénéennes et de l’ONF il y a environ 41 000 ha de forêt sur le bassin versant du Célé.

D’après ces données, le taux de boisement a augmenté sur les Causses (+ 4,6 %) et avant Causse (+ 1.2 %) entre 1990 et 2002. Il a diminué sur le Ségala (- 1.3 %) et la Châtaigneraie (- 7%). Cette diminution sur les secteurs les plus pentus de notre territoire, souvent au profit de l’agriculture (défrichements), pourraient expliquer une partie de « l’envasement et l’ensablement » croissant du Célé.

4.7.2 Les types de couverts

Les principaux types de forêts différenciées par l’Institut Forestier National (IFN) sont :
- les futaies : forme de forêt dans laquelle les arbres sont principalement issus de francs-pieds, c’est-à-dire par multiplication générationelle (de graines) ;
- les taillis : forêt issue de rejets de souche ou de drageons, exploitée à rotation de 20-30 ans pour le châtaignier et de 50-70 ans pour le chêne ;
- les mélange de futaie et taillis : forme de la forêt présentant des éléments du taillis et de la futaie, composé d’une strate inférieure (sous-étage) de rejets de souche et d’une strate dominante de francs-pieds et en partie de rejets de souche réservés ;
- les forêts ouvertes : peuplement dont le taux de couvert est < 40 % ;
- les landes : cette catégorie groupe les landes, friches et terrains vacants non cultivés et non entretenus régulièrement pour le pâturage ;
- les peupleraies cultivées.
Tableau 69 : importance relative des différentes formations forestières

Sources : IFN

Figure 36 : Types de formations forestières du bassin versant du Célé

Sur le bassin du Célé les formations principales sont les mélanges de futaie de feuillus et taillis sur le Cantal et des formations autres que celle décrites ci-dessus dans le Lot (il s’agit de petits boisements isolés situés hors des secteurs forestiers).

Les peupleraies représentent une infime surface par rapport aux autres essences mais peuvent se retrouver de manière concentrée dans les plaines alluviales étroites de la basse vallée du Célé. Ces plantations modifient l’ancien habitat de prairies et peuvent être vécues localement comme une fermeture du paysage.

4.7.3 Type de propriété et mode de gestion des forêts

- Deux modes de gestion forestière sont pratiqués sur le bassin du Célé :
 - une gestion traditionnelle en taillis pour la production de piquets ou de bois de chauffage sur la basse Châtaigneraie et sur les Causses ;
 - une valorisation des potentialités forestières, qui sont meilleures, sur le Ségala et la Haute Châtaigneraie. Cette valorisation des parcelles, passe parfois par le remplacement d’essences existantes par de nouvelles essences (reboisement en douglas par exemple). Sur le secteur de Marcolès la gestion forestière est dynamique, les futaies mixtes sont exploitées pour la production de bois d’œuvre.

Sur le bassin du Célé, 96 % de la surface forestière appartient à des propriétaires privés.
- Trois outils permettent aux propriétaires de garantir une gestion forestière durable :

<table>
<thead>
<tr>
<th>Type de couvert forestier</th>
<th>Cantal</th>
<th>Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forêt ouverte de feuillus</td>
<td>1.41%</td>
<td>5.90%</td>
</tr>
<tr>
<td>Futaie de conifères</td>
<td>11.51%</td>
<td>1.81%</td>
</tr>
<tr>
<td>Futaie de feuillus</td>
<td>0.58%</td>
<td>0.90%</td>
</tr>
<tr>
<td>Futaie mixte</td>
<td>4.36%</td>
<td>0.08%</td>
</tr>
<tr>
<td>Mélange de futaie de conifères et taillis</td>
<td>9.48%</td>
<td>1.21%</td>
</tr>
<tr>
<td>Mélange de futaie de feuillus et taillis</td>
<td>44.61%</td>
<td>10.74%</td>
</tr>
<tr>
<td>Taillis</td>
<td>28.00%</td>
<td>24.75%</td>
</tr>
<tr>
<td>Landes</td>
<td>0.05%</td>
<td>3.00%</td>
</tr>
<tr>
<td>Peupleraies</td>
<td>0.00%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Autres</td>
<td>0.00%</td>
<td>51.56%</td>
</tr>
</tbody>
</table>

Tableau 69 : importance relative des différentes formations forestières

Sources : IFN

- **Le Code des bonnes pratiques sylvicoles** : il s’agit de préconisations de gestion en fonction des types de peuplement. Ces préconisations doivent être respectées par les propriétaires forestiers bénéficiant d’aides publiques ou d’un allègement fiscal.

- **Le Règlement Type de Gestion** : C’est un cahier des charges, rédigé par une coopérative forestière ou un expert, qui stipule les pratiques que le propriétaire s’engage à suivre. Il est soumis au CRPF.

- **Le cas des défrichements** :

Certaines coupes forestières sont aussi soumise à des formalités administratives : les coupes forestières de plus de 4 ha prélevant plus de la moitié du volume de la futaie sont soumises à autorisation. De plus, suite à une coupe rase de résineux, le propriétaire doit replanter dans les 5 années à venir (Loi d’Orientation sur la Forêt de 2001). Il est à noter que sur le Cantal les coupes rases sur des surfaces avec plus de 30 % de pente sont un motif de non agrément d’un PSG.

La sylviculture : à retenir !

Deux type de gestion forestière sont pratiqués sur le bassin versant du Célé : une gestion traditionnelle sur les Causses et la basse Châtaigneraie et une gestion plus intensive sur le Ségala et la haute Châtaigneraie. Cette dernière est à l’origine de pratiques forestières qui peuvent avoir un impact sur les milieux aquatiques : coupes rases sur sols en pente, plantation en résineux en bord de cours d’eau. Plusieurs outils de promotion d’une sylviculture durable existent mais ils sont encore rares sur le bassin du Célé.

Les défrichements pour conversion de surfaces boisées en terres agricoles peuvent également présenter un fort impact en matière d’érosion des sols. Ces pratiques, qui ont augmenté depuis 10 ans, contribuent à l’augmentation de la turbidité des eaux, à l’ensablement des cours d’eau du Ségala et de la Châtaigneraie, voire à l’augmentation de la fluctuation des débits : la rétention en eau est moins bonne en raison d’une destruction de la litière, ce qui peut accentuer le phénomène de crues et la baisse des débits à l’étiage.

Cette problématique est fortement ressortie lors des réunions des groupes de travail. Le SAGE devra envisager des solutions pour améliorer certaines pratiques d’exploitation forestière et réduire ou « encadrer » les défrichements.
5 Loisirs liés à l’eau

5.1 Le contexte

Dans la partie lotoise du bassin du Célé, les activités liées au tourisme ont connu depuis quelques années un développement important, qui se traduit notamment par la création d’un certain nombre de structures d’accueil comme les campings. Ces derniers sont, dans leurs grande majorité, implantés dans la vallée du Célé à l’aval de Figeac.

Dans le département du Cantal, les activités touristiques apparaissent moins développées, du fait, notamment, d’un climat moins favorable à l’accueil en période estivale. Néanmoins, une volonté de développement du tourisme se manifeste, illustrée par la création de plans d’eau communaux, de campings et de gîtes.

5.2 Le dispositif inf’eau loisirs

5.2.1 Origine du projet

Dans l’attente d’une amélioration de la qualité sanitaire des eaux du Célé, les services de l’Etat ont incité les élus locaux à prendre des arrêtés d’interdiction de baignade sur la rivière Célé (avant 2003 notamment), tout en laissant libre la pratique des autres activités de loisirs aquatiques (navigation, pêche).

Le suivi effectué depuis 1996 permettait de constater que ces interdictions générales ne reflétaient pas la réalité, la qualité des eaux n’étant dégradée sur des zones localisées, et généralement à l’issue d’épisodes pluvieux. Par ailleurs, l’ensemble des acteurs concernés soulignait l’inefficacité des dispositions réglementaires qui, d’une part, n’étaient pas respectées et d’autre part portaient un réel préjudice à l’économie touristique du secteur.

5.2.2 Le projet

Afin de renseigner les Maires de la Vallée, de garantir une meilleure sécurité des pratiques de loisirs aquatiques, d’apporter aux usagers ainsi qu’aux professionnels, une information réelle et objective sur les risques de contamination bactériologique, le Conseil Général du Lot, la DDASS et les services de la ville de Figeac ont mis en place, dans le cadre du Contrat de Rivière Célé, un dispositif d’information journalière sur l’aptitude supposée des eaux aux loisirs aquatiques.

Cette initiative permet de renseigner les usagers sur l’état prévisible des eaux du Célé tout en rappelant les risques encourus au contact d’eau souillée et les consignes d’hygiène qu’il convient de respecter. L’information apportée n’a, bien entendu, aucune valeur juridique et ne se substitue en aucun cas aux informations réglementaires dispensées par les autorités compétentes (Ministère de la santé, Maires).

Sources :
Schéma d’aménagement d’équipement et de pratique des activités de loisir sur le Célé - Association pour l’Aménagement de la Vallée du Lot, 2000
5.2.3 Le dispositif

L’analyse en temps réel de la contamination bactériologique des eaux est à ce jour difficilement réalisable (problèmes techniques et de coût). Toutefois, l’étude approfondie de la qualité des eaux du Célé effectuée depuis 1996 (sources SATESE du Lot) a montré que le degré de contamination bactériologique des eaux était parfaitement corrélaté à la transparence de ses eaux.

L’analyse de la turbidité des eaux constitue une méthode « rapide » et fiable (exception faite de problèmes de pollution ponctuelle, type by-pass de stations d’épurations en principe identifiables grâce aux équipements de télésurveillance) pour évaluer le risque de contamination des eaux du Célé.

La réflexion et les recherches effectuées par les partenaires de l’opération (SATESE du Lot, DDASS du Lot, Mairie de Figeac et Contrat de rivière) ont abouti à proposer un système expérimental de contrôle de la turbidité des eaux et d’information journalière des usagers. Ce système est fonctionnel depuis l’été 2003.

Les mesures de la turbidité des eaux sont effectuées à 9h chaque jour sur la station d’eau potable de Figeac et sur une station installée spécifiquement sur la commune de St Sulpice. Il s’agit de données ponctuelles couplées au résultat du suivi en continu effectué par les appareils de mesures (enregistrement des données de la nuit), le suivi en continu donnant une idée plus précise de la tendance en matière de débits : montée ou baisse des eaux.

5.2.4 L’information aux usagers

Les informations recueillies sont analysées par le SATESE afin d’être diffusées dès 10 h (la navigation est « autorisée » dans le cadre de la Charte de conciliation des usages à partir de 11 h) sur un répondeur à disposition des maires, usagers et professionnels.

Outre l’organisation que nécessite cette opération (mise à disposition de personnel, permanences le week-end et les jours fériés, élaboration des messages...), elle a aussi nécessité des travaux d’installation (St Sulpice) d’appareils de mesure ainsi que la mise en place d’un réseau entre tous les opérateurs nécessaires à l’analyse et au transfert de l’information.

L’information sur le dispositif est consultable :
- En mairie et chez les professionnels qui sont destinataires des bulletins mensuels ;
- Sur le site www.cg46.fr du Conseil Général du Lot ;
- Sur un répondeur téléphonique (0805 46 46 00), tous les jours à partir de 10 h ;
- Sur la carte des loisirs aquatiques en vente dans les OTSI et les campings de la vallée.

L’information sur le dispositif est également consultable (panneaux d’information) sur les aires d’embarquement public (canoë) et les aires de pêche aménagées disposées tout au long de la vallée du Célé.

Le dispositif Inf’Eau loisir : à retenir !

Dans le cadre du Contrat de rivière Célé, le SATESE, la DDASS du Lot et la mairie de Figeac ont mis en place un système d’information journalière sur l’aptitude supposée des eaux du Célé aux loisirs aquatiques. La mesure quotidienne de la turbidité des eaux du Célé en deux points (Figeac et St-Sulpice) permet d’estimer le risque de contamination bactériologique des eaux. Les informations sur ce risque sont diffusées dès 10h sur un répondeur téléphonique et sur Internet, à disposition des pratiquants de loisirs aquatiques, des professionnels du tourisme et des maires.
5.3 Charte de conciliation des usages

Les usages en présence sur le bassin du Célé, rivière privée et étroite, sont une source potentielle de conflits.

Une charte de conciliation des usages, mise en œuvre dans le cadre du Contrat de rivière fédère les représentants d’usagers :
- Fédérations de pêche et AAPPMA ;
- Comité Départemental de canoé-kayak du Lot et loueurs de canoës ;
- Associations de riverains et de propriétaires de moulins ;
- Communes concernées.

Signée en juin 2000, cette charte est gérée depuis par l’Association pour l’Aménagement de la Vallée du Lot. Outil d’échange et de négociation, la charte a permis de réduire les conflits d’usage et de réorganiser les pratiques nautiques dans le respect des autres usages (agriculture, pêche, riveraineté). La charte rappelle les droits et devoirs des usagers et instaure un horaire de navigation : 11h – 19h.

Une grande majorité de structures locales adhère à cet outil et en respectent les consignes. Toutefois, certaines structures extérieures à la vallée du Célé organisent des séjours ou des journées sur le Célé. N’ayant pas toujours eu l’information sur le contenu de la charte en amont, elles n’en respectent pas toujours les consignes, ce qui provoque chroniquement des conflits et des tensions entre les usagers.

La Charte de conciliation des usages : à retenir !

La pratique des loisirs aquatiques constitue un attrait majeur pour le territoire. La conciliation entre ces usages est aujourd’hui organisée grâce à une charte de conciliation des usages mise en œuvre au cours du Contrat de rivière Célé et animée depuis par l’Association pour l’Aménagement de la Vallée du Lot. Cette charte a abouti à la mise en place d’aménagements nautiques ou de pêche (aires d’embarquement, zones de pêche, signalisation…) qui visent à organiser les usages légitimes de la rivière tout en réduisant les risques de conflit.

5.4 La pêche de loisirs

5.4.1 Le contexte

Etendue du droit de pêche : Sur les cours d’eau non domaniaux, les propriétaires riverains ont chacun de leur côté le droit de pêche jusqu’au milieu du cours d’eau. Ce droit constitue un accessoire de la propriété du lit.

Droit du propriétaire riverain : Le propriétaire riverain peut autoriser ou interdire la pêche, au même titre que le passage sur ses terres. Il n’existe pas de servitude de passage au profit des pêcheurs sur les cours d’eau non domaniaux à l’exception des secteurs où le droit de pêche du riverain a été rétrocédé à une Fédération de pêche ou une AAPPMA.

Obligations du titulaire du droit de pêche : En contrepartie du droit de pêche, le titulaire a une obligation de protection du patrimoine piscicole et des milieux aquatiques.

Sources :
Fédérations des AAPPMA du Cantal et du Lot
5.4.2 Les usagers et leurs représentants

Dans le domaine piscicole, 5 Associations Agrées pour la Pêche et la Protection des Milieux Aquatiques gèrent les cours d’eau et plans d’eau du bassin du Célé :

AAPPMA de :
- Maurs
- Bagnac-sur-Célé
- Figeac
- Cabrerets
- Assier (gestion d’un plan d’eau)

L’AAPPMA de St Mamet la Salvetat a été dissoute fin 2005.

Les ventes de cartes diminueraient globalement de 10 % par an depuis quelques années, dans le Lot comme dans le Cantal.

5.4.3 Les pratiques halieutiques et les aménagements

5.4.3.1 Les pratiques halieutiques

La pression de pêche nécessite un alevinage conséquent sur le Célé et certains de ses affluents. Une pisciculture fédérale, en place sur le Bervezou (Lieu dit le Colombier, commune de Linac) assure l’approvisionnement en poissons des AAPPMA du département du Lot.

- Lot
 - L’AAPPMA de Bagnac dispose 58 boîtes Vibert\(^{26}\) (œufs déposés dans le milieu naturel avant éclosion) de souche Truites farios sauvages (géniteurs capturés sur le Veyre) sur les affluents du Célé.
 - L’AAPPMA de Figeac dispose 81 boîtes Vibert sur les affluents du Célé de son secteur et effectue quelques déversements ponctuels de truites portions, essentiellement dans le plan d’eau du Surgié et sur le Célé.
 - L’AAPPMA de Cabrerets déverse quelques gardons et juvéniles de brochets sur le Célé aval, parfois des truites portions pour l’ouverture.

- Cantal

Jusqu’en 2000 les deux AAPPMA du Cantal empoisonnaient le Célé, la Rance, le Veyre et le Moulègre uniquement en Truite fario. Depuis 6 ans les empoissonnements ont fortement diminués : en 2001, 176 000 œufs, 33 000 alevins et 985 Kg d’adultes ont été introduits sur tous ces cours d’eau. En 2006, seul le Célé et la Rance ont été empoisonnés par l’AAPPMA de Maurs (10 000 œufs et 47 kg d’adultes sur le Célé, 200 kg d’adultes sur la Rance).
Le seul cours d’eau principal actuellement en gestion patrimoniale est le Veyre. Le Plan Départemental pour la Protection des milieux aquatiques et la Gestion des ressources piscicoles (PDPG) du Cantal préconise de traiter la Rance et ses affluents de la même façon, ce qui semble être

\(^{26}\) 1 boîte Vibert = 900 à 1000 œufs ce qui donne statistiquement une quinzaine de truites adultes (3 an et plus) par boîte Vibert
la tendance actuelle (diminution des alevinages chaque année). Dans le Lot une gestion patrimoniale est proposée par le PDPG sur le Bervezou. Ailleurs, les alevinages se poursuivront encore au moins dans les années à venir.

Les techniques de pêche pratiquées sur le bassin du Célé sont adaptées aux lieux de pêche :
- principalement pêche au coup sur les plans d'eau (Le Rouget, Maurs, Naucaze, Cassaniouze, Figeac et Cambes) et sur la partie aval du Célé (2ème catégorie) ;
- pêche au toc et à la mouche sur la partie amont et sur les affluents du Célé.

5.4.3.2 Les aménagements

Depuis quelques années, des efforts d’aménagement de zones de pêche ont été réalisés, notamment suite au Schéma d’Aménagement Nautique et de pêche élaboré dans le cadre du Contrat de rivière. Cf. carte 32.

- Parcours de pêche No-kill :

Un parcours de pêche No-Kill de 3.8 km (les poissons capturés sont rejétés vivants dans le cours d'eau) a été créé entre Bagnac et Viazac par l'Association pour l'Aménagement de la Vallée du Lot, en partenariat avec la Fédération de pêche du Lot, les communes et les AAPPMA concernées. Sur ce parcours, des habitats ont été recréés, des systèmes d'abreuvement hors cours d'eau et deux aires de stationnement ont été aménagés.

- Aires de pêche :

La plupart des plans d'eau sont sommairement aménagés pour l'accueil des pêcheurs (Domaine du Fau, lac d'Assier, Plan d'eau des anciennes tuileries de Cambes, Etang du Roc de la France à Latronquiére,...).
L'AAPPMA de Figeac a aménagé en 2006 deux aires de pêche aux coups sur le Célé (communes de Figeac et de St Sulpice). Ces aires comprennent une zone de stationnement et des postes de pêche aménagés avec un effort d'intégration paysagère.

Les pontons de pêche du plan d'eau du domaine du Fau (commune de Maurs) sont en cours de réaménagement, en parallèle de l'agrandissement du plan d'eau et de l'équipement de la chaussée en passe à poissons.

- Handipêche :

4 zones handipêche, visant à favoriser l’accueil des personnes à mobilité réduite, ont été réalisées sur la rivière Célé. Deux postes supplémentaires seront créés en 2007, à Figeac (plan d'eau du Surgié) et à Cabrerets.

5.4.3.3 Les réserves de pêche

Les réserves de pêche sont des zones protégées pour les populations piscicoles où la pratique de la pêche est interdite. Elles présentent un intérêt patrimonial majeur pour la préservation des individus sauvages et participent au repeuplement piscicole naturel des rivières.
Il n'y a pas de réserves de pêche dans la partie cantalienne du bassin, la fédération de pêche du Cantal estimant que la réglementation est adaptée pour réguler les prélèvements. Dans le Lot, 8 tronçons de cours d'eau sont classés en réserve de pêche.
<table>
<thead>
<tr>
<th>Cours d'eau</th>
<th>Limites (amont-aval)</th>
<th>Commune</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Bervezou</td>
<td>De 350 m au dessus de la chaussée de la pisciculture du Colombier à la confluence avec le Célé</td>
<td>Linac - Viazac</td>
<td>1 120 m</td>
</tr>
<tr>
<td>Ruisseau des Carmes</td>
<td>De 1000 m en aval du pont de la Blanquayrie à la confluence avec le béla de Laurensou</td>
<td>Figeac</td>
<td>650 m</td>
</tr>
<tr>
<td>Ruisseau de Corn</td>
<td>Depuis sa résurgence à la confluence avec le Célé</td>
<td>Corn</td>
<td>200 m</td>
</tr>
<tr>
<td>Ruisseau la Burlande</td>
<td>Depuis le gué des prés de Ferrand à 200 m en amont du CD 76.</td>
<td>Prendeignes - Viazac - St Perdoux</td>
<td>1 500 m</td>
</tr>
<tr>
<td>Le Veyre</td>
<td>De la passerelle du moulin d'Urbain au pont de la RN 122.</td>
<td>Bagnac - Linac</td>
<td>2 000 m</td>
</tr>
<tr>
<td>Le Célé</td>
<td>Canal de fuite du moulin de Géniez</td>
<td>Sauliac/Célé</td>
<td>160 m</td>
</tr>
<tr>
<td>La Sagne</td>
<td>Du pont du chemin rural GR 651 au pont de la D 42, direction Ornac</td>
<td>Cabrerets</td>
<td>250 m</td>
</tr>
<tr>
<td>La Sagne</td>
<td>Du pont communal (entrée de Cabrerets) au dernier pont avant la confluence avec le Célé</td>
<td>Cabrerets</td>
<td>250 m</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>6 130 m</td>
</tr>
</tbody>
</table>

Tableau 70 : Les réserves de pêche du bassin du Célé

Sources : Fédération de pêche du Lot

5.4.3.4 Les animations

Deux écoles de pêche existent sur le bassin :
- Une école de pêche est animée par l’AAPPMA de Figeac, elle compte 52 élèves, inscrits à l’année. Le contenu des animations porte sur la sensibilisation à l’écosystème aquatique, l’apprentissage et la perfectionnement aux techniques de pêche. Les animations ont lieu au plan d’eau du Surgié (Figeac) ou à la maison de la Truite, local pédagogique de la fédération de pêche du Lot situé à Linac. L’AAPPMA de Figeac organise également des mercredis curieux : initiation à la pêche le mercredi au Surgié.

- Une école de pêche est également animée par les bénévoles de l’AAPPMA de Maurs.

Ces deux AAPPMA sont parfois épaulées par du personnel d’Halieutilot (regroupement des AAPPMA du bassin du Lot qui le souhaitent) pour monter des animations.

Enfin des concours sont régulièrement organisés :
- par l’AAPPMA de Maurs, chaque année au printemps à l’étang du Fau (commune de Maurs) ;
- par l’AAPPMA de Figeac : 2 à 4 concours de pêche au coup par an, en été (communes de Marcillac, Figeac, St Sulpice).

A noter que l’AAPPMA de Figeac a accueilli en 2006 la demi-finale du championnat de pêche à la truite sur le parcours No-Kill du Célé.

La pêche de loisirs : à retenir !

La pêche est une activité assez développée sur le bassin du Célé. Les 5 AAPPMA du territoire fédèrent près de 1500 pêcheurs, mais le nombre de cartes de pêche vendues à tendance à diminuer depuis quelques années.

Dans le cadre du Contrat de rivière Célé, des aménagements visant à faciliter la pratique de la pêche ont été réalisés par les sociétés ou les fédérations de pêche : aires de pêche, pontons pour handicapés, parcours de pêche No-kill ...

L’organisation de ce loisir passe aussi par la gestion des ressources piscicoles. Celle-ci est encadrée par les PDPG du Lot et du Cantal. Les PDPG définissent le type de gestion à appliquer par sous bassin (empoissonnement) ainsi que les actions à mener pour améliorer les potentialités des cours d’eau (cf. partie 4.3.2 du chapitre 2).
5.5 Le Canoë

5.5.4 Contexte juridique

Circulation d'embarcations sur les cours d'eau non domaniaux :
L'article 2 de la loi sur l'eau de 1992 renforce le fait que les loisirs et sports nautiques font partie des usages légitimes.

Droit des pratiquants de canoë-kayak tiré de la jurisprudence de la Cours de Riom en 1992 :
- les embarcations ont le droit de circuler librement en touchant au passage lit et berges ;
- s'il y a difficulté de navigation ou danger immédiat, le pratiquant peut éventuellement s'appuyer voire débarquer en terrain privé ;
- le débarquement ou le passage en terrain privé est considéré comme tacitement autorisé s'il n'y a pas de clôtures ni aucun panneau affichant clairement : « propriété privée – défense d'entrer ».

5.5.5 Fréquentation, zonage et pratique du canoë-kayak sur le bassin du Célé

5.5.5.1 La pratique

Le Célé est une rivière bien fréquentée par les canoë - kayakistes. La pratique nautique par les non licenciés s’effectue de Bagnac-sur-Célé (Lot) à Bouzies (Conduché), ce qui représente environ 75 à 80 kilomètres de descente. D’amont en aval, la fréquentation s’accentue à partir de Boussac puis devient régulière voire importante sur le reste du cours d’eau, d’Espagnac-Sainte-Eulalie à Conduché. Le classement de la rivière en ce qui concerne la navigation est de niveau I : rivière calme, petits méandres et pentes légères ; avec quelques passages de niveau II : navigation facile, courant régulier, rapides non dangereux.

La pratique nautique est donc relativement simple, permettant aux visiteurs de découvrir un cours d’eau calme tout en se détendant au fil de l’eau. Cependant, quelques risques résident dans le franchissement de « barrages » présents sur la rivière. Ces barrages, chaussées ou seuils ont été installés par l’homme et sont généralement facilement franchissables mais peuvent s’avérer dangereux lors de périodes de hautes eaux (en raison des mouvements d’eau qui se forment à leur base et appelés “rappels”).

En 1999, la vallée a accueilli 20 470 personnes pour pratiquer le canoë-kayak (estimations du CDCK, 1999). Grâce à cette activité, le tourisme est générateur de flux économiques importants, susceptibles de contribuer à la vie économique des communes de la vallée. De plus, de par l’organisation de son encadrement, l’activité canoë-kayak est également génératrice d’emploi, surtout de type saisonnier, mais correspondant tout de même à 127 mois de salaires versés en 1999.

Le débit minimal instantané sur le Célé pour pratiquer le canoë kayak serait (d’après les pratiquants) de 1,1 m³/s à la station des Amis du Célé (or le DOE est de 1,2 m³/s). Une pratique optimisée demanderait 2,8 m³/s soit la hauteur d’étage + 10 cm (étude CARA, 1997). Assez régulièrement, la pratique est diminuée voire arrêtée du fait des trop faibles niveaux d’eau. Par exemple, en 2003, la pratique a été interrompue à partir du 20 juillet, du fait de l’insuffisance des débits.

Sur le Veyre, le canoë kayak se pratique très ponctuellement en hautes eaux par les clubs.
5.5.5.2 Prestataires

La majorité des prestataires est située en basse vallée du Célé, exception faite du club de Figeac eaux-vives. D’amont en aval, les structures assurant des locations sont les suivantes :
- Club de Figeac eaux vives, depuis 2006, la location de canoë kayak est gérée par l’Office Intercommunal des Sports (Figeac);
- Romantic bar (Brengues);
- Camping de Moulin Vieux (Brengues);
- Passion aventure (Marcilhac sur Célé);
- Nature et loisirs (Sauliac);
- Les amis du Célé (Orniac);
- Kalapca (Bouziès).

D’autres structures accueillent des groupes et les encadrent plus ponctuellement sur la rivière. C’est notamment le cas de la FHOL de Courbous (Caberets). Des campings (Marcilhac et St Sulpice) possèdent également une convention avec certains loueurs qui leurs mettent des embarcations à disposition.

A noter dans les 6 dernières années le départ de 3 organismes présents en vallée : UCPA (Orniac), Keranacam (Espagnac) et JPA à Viazac. Les raisons évoquées sont diverses mais la mauvaise qualité de l’eau constitue un des arguments principaux évoqués.

5.5.5.3 Les risques

Sur la portion du Célé fréquemment naviguée, 5 seuils encore en place et potentiellement dangereux sont dépourvus de glissière à canoë : Moulin de Bal dy (Bagnac sur Célé), Moulin de Merlançon (Figeac), Moulin de Bullac (Boussac), Moulin de Ste Eulalie (Espagnac Ste Eulalie) et Moulin de Cabrerets (Caberets).

2 chaussées (Moulin de Laporte et seuil des pratges – Figeac) ont été équipées en dispositif de franchissement dans le cadre du Contrat de rivière. La chaussée de la Merlie (Sauliac) devait faire l’objet d’un réaménagement (avant la fin 2003) de sa glissière à canoës, jugée dangereuse et difficile d’entretien. A ce jour, les travaux n’ont pas été réalisés.

L’absence de règles concernant la pratique du canoë – kayak en période de hautes eaux ou de très hautes eaux a été évoquée à plusieurs reprises par les élus locaux et les représentants d’usagers. Eu égard au risque lié à une pratique en hautes eaux et des accidents déjà survenus (un décès en 2000 lors d’une pratique en hautes eaux) certains responsables ont évoqué à plusieurs reprises la nécessité de fixer des seuils au-delà desquels la pratique hors club pourrait être interdite, tout au moins encadrée.

5.5.5.4 Les aménagements

L’application du Schéma d’Aménagement Nautique et de Pêche élaboré dans le cadre du Contrat de rivière, dans un objectif de sécuriser et de concilier la pratique des loisirs aquatiques, a permis :
- l’aménagement d’un réseau de 14 aires d’embarquement publiques ;
- l’organisation, l’harmonisation et l’installation d’une signalisation routière, nautique et informative sur une majeure partie du linéaire (en cours).

Ces travaux sont encore en cours sur le Pays de Figeac ; terminés sur le territoire de la communauté de communes Vallée et Causse et sur la commune de Bagnac et programmés pour 2008 sur celui de...
la communauté de communes Lot-Célé.

5.5.5.5 Les répercussions de l’activité sur l’environnement

La pratique des activités nautiques peut engendrer des perturbations sur le milieu.

Le résultat d’études menées en Amérique du Nord (Canada) et en France (Haut Allier et Durance) indique que les impacts de ces pratiques sont liés :
- aux types (rafts, nage en eaux vives, canoë…) et aux modalités de pratiques (dates de pratiques, fréquence de dérangement, pression de l’activité, niveau des pratiquants…) ;
- aux milieux concernés (morphologie du cours d’eau, débits, nature du substrat, sensibilité des espèces présentes…) ;
- aux degrés d’aménagements existants (accès à l’eau aménagés ou non, zones de portage présentes ou non…).

Le croisement de ces données a permis aux auteurs des études et rapports de prouver ou de suspecter certains dysfonctionnements localisés :

Au niveau des mises à l’eau :
- Piétinement des abords et sur la zone entrée-sortie ;
- Raclage du fond ;
- Dérogement de la faune aquatique et de l’avifaune ;
- Nettoyage soutenu de la végétation ;
- Remise en suspension des sédiments.

Sur les zones de navigation :
- Raclage du fond (quand lame d’eau est insuffisante). Évalué à environ 6 % du linéaire (Durance) et de façon temporaire.
- Divagation des embarcations après des zones de courants forts.

Les principaux impacts seraient les suivants :
- Poissons :
 - Impacts sur les zones de fraie, pontes et sur les alevins des premiers stades de vie :
 - Salmonidés : automne-hiver ;
 - Cyprinidés rhéophiles (barbeaux, ablettes) : printemps ;
 - Zones critiques : plats, radiers (frayères ou nurserie), zones de calme en bordure.
 - Sur les adultes :
 - Géniteurs : risque de diminution de la fécondité par dérangement ;
 - Réactions de fuite ou de modification du comportement pouvant provoquer à terme des perturbations (alimentation, changement d’habitats…).
 - Migration : impact ?
- Ecrevisses à pieds blancs :
 - Forte mortalité par piétinement.
- Invertébrés :
 - Raclage, piétinement, remise en suspension des sédiments :
 - Modification de la structure, et de la stabilité des habitats ;
 - Destruction des populations en place et augmentation de la dérive des individus ;
 - Colonisation des secteurs dégradés plus difficile.
- Végétation et sols
 - Remise en suspension des algues et des limons : trouble l’eau et participe au colmatage des fonds.
 - Dans certaines zones, une dégradation de la végétation aquatique a été observée (herbiers).
Dans l’ensemble, ces impacts paraissent donc modérés et très localisés. Ils peuvent dans certains cas facilement être amoindris, notamment en aménageant les zones d’accès ou de repos ou encore en organisant la pratique (horaires de navigation autorisée, réglementation différente en fonction des saisons…). Par ailleurs, il faut différencier les pratiquants sportifs et les « amateurs » : les pratiques commerciales entraînent un impact notable, diffus mais dans des zones et des périodes « favorables au milieu » ; les pratiques sportives entraînent une pression moins forte mais sur des zones et à des périodes plus vulnérables.

Sur le bassin du Célé, le plus gros problème pourrait venir de certaines pratiques de clubs en période hivernale ou post hivernale, sur des cours d’eau de moindre gabarit, accueillant des espèces sensibles voire remarquables. La pratique « à but commercial » observée aujourd’hui ne semblerait pas à ce jour, problématique pour les milieux.

Les dégradations constatées (ou supposées) sur la faune aquatique (poissons, peuplements benthiques, crustacés) ; sur la végétation des berges et aquatique ; ou encore sur l’avifaune seraient assimilables, compte tenu de la pression existante à ce jour (nombre de pratiquants 4 fois moins élevé que sur la Durance par exemple), des efforts d’organisation des usages (horaires de navigation, aménagement d’accès, équipement en passes à canoës et poissons) et des modalités de pratiques observées.

Conclusions :
Le degré de perturbation lié aux activités de loisirs sur les milieux aquatiques est impossible à définir précisément. Toutefois, il semble négligeable face à l’impact des phénomènes naturels d’érosion ou de fluctuation des régimes hydrauliques. Seuls les impacts sur l’avifaune (dérangement) et sur les zones sensibles (affluents) en période hivernale et post-hivernale (dégрадations de frayères…) paraissent plus problématiques.
5.6 Autres loisirs liés à l'eau

5.6.1 La baignade

Usage légitime de l'eau, la baignade est, durant l'été, une activité fortement recherchée par les vacanciers et les habitants locaux.

Sur le bassin du Célé, deux plans d'eau sont aménagés et ouverts à la baignade : Calvinet (Lac de L'Estanquiol) - baignade aménagée et surveillée ; Cassanouze (Etang) – baignade aménagée et surveillée. Le plan d'eau du Rouget aménagé pour la baignade aurait été fermé en 2006 pour cause d'une mauvaise qualité de l'eau. Aucun site en rivière n'est aménagé et surveillé, toutefois, la baignade se pratique « au fil de l'eau » sur le Célé et la Rance. 16 sites en rivières sont plus particulièrement fréquentés à cet effet (Cf. Carte 32).

Le facteur limitant le développement de la baignade est la pollution bactériologique de l'eau : chaque été, du fait de pics de pollution ponctuels, le Célé est momentanément classé impropre à la baignade par arrêtés municipaux. Il a donc été préconisé d'attendre que cette pollution de l'eau soit maîtrisée et diminuée pour s'attacher à la réorganisation de cette pratique sur le Célé. La mise en œuvre du dispositif in' eau loisirs Célé permet de répondre en partie au problème de fluctuation de la qualité bactériologique et d'information du public.

Une autre barrière vient par ailleurs s'opposer à la baignade. Jusqu'ici, la baignade était autorisée mais non surveillée. Mais, en cas d'accident, le maire de la commune peut se voir jugé responsable de l'acte de non surveillance et de l'incident survenu, c'est pourquoi, depuis l'été 1999, certains élus ont pris des dispositions (arrêtés municipaux) pour interdire la baignade. Une petite commune de la vallée peut en effet difficilement assumer seule la charge financière d'un surveillant de baignade diplômé.

Il semblerait toutefois que le développement de l'information à destination des usagers permette de s'affranchir de la surveillance de la baignade pratiquée sur le territoire communal.

5.6.2 La randonnée

Le territoire est couvert par un réseau de circuits allant de la grande randonnée (GR 6 : 98 km entre Figeac, Rocamadour, Souillac ; GR 651 : 41 km, variante du GR 65 par la vallée du Célé de Béduer à Bach, chemin de Saint Jacques de Compostelle) aux boucles dites familiales. Nombreux sont les itinéraires qui longent les cours d'eau du bassin ou mettent en valeur le patrimoine bâti lié à l'eau (moulins, lavoirs, sources...).

Depuis quelques années la randonnée pédestre s'est développée en vallée du Célé. Pour répondre à cette demande certaines communes ont créé des circuits de petite randonnée. Quelques réalisations pilotes ont également vu le jour : randonnée commentée sur le territoire de la communauté de communes Lot –Célé.

Les sorties accompagnées se sont également développées ces dernières années, à l'initiative du Parc naturel régional des Causses du Quercy, de l'Association Lot-nature ("sorties nature") et de certains
5.6.3 **Les autres usages des rivières**

Depuis peu, la rivièrè Célè fait l’objet de nouvelles utilisations.

Par exemple, depuis 3 à 4 ans, des colonies de vacances du nord de la France (Fontenay sous Bois ou encore Le Havre) viennent s’installer en bord de rivière. Elles louent un terrain le plus souvent à un agriculteur et elles y passent les deux mois d’été. Durant cette période, plusieurs groupes se succèdent et profitent de toutes les activités offertes dans la vallée, tant les visites de sites que le canoë-kayak ou la pêche. En échange, en fin de séjour, ces colonies doivent remettre le terrain dans l’état initial afin obtenir l’accord du propriétaires pour pouvoir revenir l’année d’après.

Il s’agit d’une nouvelle façon d’aborder l’espace rivièrè et de le partager avec d’autres utilisateurs.

Autres usages liés à l’eau: à retenir !

Malgré l’absence de site de baignade en rivière aménagé et surveillé, la baignade se pratique régulièrement sur le Célè et plus ponctuellement sur la Rance. Elle se pratique aussi sur deux plans d’eau aménagés pour la baignade.

Mais la qualité médiocre des eaux (notamment la qualité bactériologique) limite cet usage. Le dispositif Inf’eau loisirs permet toutefois de le faciliter en informant les usagers sur la qualité journalière de l’eau.

La randonnée est présente sur le territoire, que ce soit sous la forme de chemins de grande randonnée ou de boucles locales. Elle est notamment présente en basse vallée du Célè.
5.7 Les Chaussées

5.7.1 Caractéristiques des chaussées du bassin du Célé

5.7.1.1 Contenu de l’étude

L’étude comprenait :
- la localisation des chaussées ;
- l’analyse de leur état ;
- la recherche de l’usage qui y est actuellement lié (production hydroélectrique, irrigation, protection d’ouvrages, patrimonial, …) ;
- l’analyse de leur impact sur l’environnement (franchissement piscicole, érosions, …).

Sur les cours d’eau suivis, 228 seuils ont été inventoriés (Cf. carte 33) :
- Célé : 46 seuils
- Rance : 22 seuils
- Estrade (Maurs) : 11 seuils
- Arcambe : 6 seuils
- Veyre : 25 seuils
- Drauzou : 11 seuils
- Ressège : 10 seuils
- Bervezou : 9 seuils
- Moulègre : 11 seuils
- Anès : 14 seuils
- Saint Perdoux : 3 seuils
- Sagne : 11 seuils
- Ruisseau Noir : 2 seuils
- Enguirande : 3 seuils
- Autres (Cantal) : 28 seuils
- Autres (Lot) : 14 seuils
- Autre (Aveyron) : 2 seuils

Ces chaussées sont pour la plupart très anciennes et en pierre de maçonnerie. Elles ont souvent été consolidées (parement bétonné pour assurer une liaison entre les blocs). Par ailleurs nombreuses d’entre elles ont été rehaussées depuis leur origine (ex : pose d’anciens poteaux EDF sur la crête du barrage). Ces travaux, jugés mineurs par les propriétaires, peuvent provoquer des disfonctionnements importants sur les cours d’eau : obstacle au franchissement piscicole, non respect des débits réservés…

5.7.1.2 L’impact des chaussées

L’impact des chaussées sur les milieux naturels est ambivalent :
- La présence de chaussées peut être positive quand elles provoquent une rehausse du niveau
de l’eau à l’étage et qu’elles créent des zones de calme et profondes à l’amont, rehaussant ainsi le niveau de la nappe alluviale ou qu’elles permettent un écrêtement des crues annuelles ou bisannuelles ;

- A l'inverse, une chaussée est aussi à l'origine de nombreuses dégradations : augmentation de la température de l'eau à l'amont du seuil, problème de franchissement pour les poissons, dérivation d'une partie de l'eau de la rivière, création de courants à l'aval susceptibles d'accéter la régression des berges, aggravation de l'ensablement et/ou de l'envasement à l'aval et des inondations.

5.7.1.3 Principaux résultats sur le bassin du Célé

L’état physique et biologiste des cours d’eau du bassin sont intimement liés à la présence de ces seuils en nombre parfois très important sur un linéaire réduit (ex : Anès). Leur destruction ou à l'inverse leur consolidation et éventuellement rehaussement ont une incidence non négligeable sur l’état du lit, des berges, de la ripisylve et des habitats.

L’étude d’inventaire et de caractérisation des seuils du bassin du Célé a abouti à un classement des seuils en fonction de leur rôle (stabilisation d’une zone AEP, maintien du profil en long…) et de leurs impacts sur les milieux (franchissabilité piscicole, …). Les résultats de l’analyse multicritère ont permis de connaître l’intérêt du maintien, de la suppression, du réaménagement ou de l’équipement de ces seuils dans l’objectif de répondre objectivement aux questions des propriétaires, des usagers (pêcheurs…), des collectivités et éventuellement de mettre en place un programme de gestion de ces ouvrages.

- 97 seuils présenteraient un impact sur le fonctionnement hydraulique des cours d'eau : aggravation de l'étage, érosion des berges ou atterrissement.

- 32 % de ces seuils ont été classés franchissables par une majorité d'individus à tout moment, 10 % franchissables par quelques individus à tout moment, 20 % par quelques individus une partie du temps et 31 % infranchissables.

Les chaussées difficilement franchissables sont nombreuses sur le Célé, le Drauzou, le Veyre et l'Anès, or ce sont des cours d’eau qui présentent un grand nombre de frayères. Elles provoquent donc des problèmes d’accès aux zones de fraires même si ce point négatif peut toutefois être relativisé car beaucoup de ces ouvrages infranchissables sont situés en tête de cours d'eau.

- Environ la moitié des seuils présentent encore un usage, les deux tiers étant des usages privés (irrigation, plan d’eau d’agrément…).

- Seuls 7 seuils permettent de stabiliser une zone AEP et 20 le profil d’équilibre d’un cours d’eau ou de protéger un ouvrage (ponts…).

- 41 % sont ébréchés et risquent de disparaître si aucun programme de consolidation n’est mis en place rapidement.

Compte tenu du nombre d’ouvrages recensés, aucune opération collective n’a été entreprise à ce jour pour améliorer la gestion des seuils ou réduire leur incidence sur les milieux naturels.

Ce diagnostic reflète donc une situation assez fragile, qui est révélatrice de charges d’entretien plutôt lourdes. En effet, le maintien d’une chaussée en bon état, représente des investissements élevés estimés à plusieurs milliers d’euros par an (étude EPIDOR – 2000).
5.7.2 Intérêt patrimonial des moulins

Les propriétaires de moulins regroupés en associations (Association des Moulins du Quercy, Syndicat de Défense et de Sauvegarde des Moulins et Cours d’Eau du Sud-Ouest) ont une forte volonté de préserver et de restaurer les moulins et leurs chaussées.

Sur les 22 moulins autrefois présents sur la rivière Célé, il n’en reste que 9 encore habités et présentant une chaussée ou un seuil. Pour les 13 autres moulins, ils sont soit détruits (moulin de Redondet) soit à l’abandon (moulin de Roquefort). Parmi les 9 moulins dotés d’une chaussée, seuls ceux de Marcilhac-sur-Célé, la Merlie (Sauliac-sur-Célé) et Cabrerets sont encore en activité (production d’électricité, de farines et autres dérivés de céréales).

Sur les affluents du Célé, nombreux sont les moulins qui disposent encore d’une chaussée dont la vocation actuelle reste un usage d’agrément. Quelques usages économiques y sont parfois encore liés : production d’électricité sur certains moulins (La Roquetanière, Val de Rance, le Drauzou), pisciculture, irrigation des terres agricoles ...

Les principales préoccupations des propriétaires de moulin sont les dégradations causées par les bois flottés, le passage d’embarcations et l’action des crues sur leur chaussée.

Les qualités du bâti font que les moulins du bassin du Célé sont très recherchés. Les nouveaux propriétaires (français et étrangers) ont généralement comme objectif de consolider ou reconstruire l’ancienne chaussée ruinée. Les techniciens du Contrat de rivière Célé comme les techniciens de rivières sont fréquemment sollicités à ce sujet.

Ce phénomène grandissant, couplé à l’évolution des enjeux nationaux en matière de production d’énergie renouvelable (loi n° 2005-781, du 13/07/2005 fixant les orientations de la pratique énergétique) peut favoriser dans un avenir proche des aménagements et une réutilisation des chaussées de moulin, susceptibles alors d’avoir des répercussions importantes sur le fonctionnement (fractionnement accentué par exemple) des cours d’eau du bassin.

Les chaussées : à retenir !

Le bassin est caractérisé par la présence de très nombreux barrages qui sont les conséquences d’une activité économique liée à l’eau, jadis, très propice. Sur les 228 seuils inventoriés, 48 % sont menacés de disparition (absence d’entretien), ce qui entraînera des modifications du lit et des berges.
ANNEXES
SOMMAIRE des Annexes

ANNEXE 1 : DONNEES DU SUIVI QUALITE ... 211

ANNEXE 2 : ANALYSE DE L'IMPACT DE LA QUALITE DES EAUX SUR LES USAGES 219

ANNEXE 3 : DONNEES DU SUIVI HYDROLOGIQUE ... 227

ANNEXE 4 : LISTE DES ZNIEFF .. 231

ANNEXE 5 : DONNEES SUR LA QUALITE DES EAUX DISTRIBUEES 235

ANNEXE 6 : DONNEES COMMUNALES SUR L'ASSAINISSEMENT 239

ANNEXE 7 : DONNEES AGRICOLES ... 247

ANNEXE 8 : GLOSSAIRE ... 251

ANNEXE 9 : REFERENCES BIBLIOGRAPHIQUES .. 255
ANNEXE 1 : Données du suivi qualité

Sources : SATESE du Lot
I. LES STATIONS DE PRELEVEMENT

<table>
<thead>
<tr>
<th>Appartenance RNB, RCD</th>
<th>Référence station</th>
<th>Rivière</th>
<th>Commune, département</th>
<th>Lieu de prélèvement</th>
<th>Physico-chimie</th>
<th>IBGN</th>
<th>Bactério</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCD 15</td>
<td>C10 (05091650)</td>
<td>Célé</td>
<td>St Constant (15)</td>
<td>Amont St Constant</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCD 15</td>
<td>C15 (05091600)</td>
<td>Célé</td>
<td>Le Trioulo (15)</td>
<td>Amont confluent Rance</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCD 15</td>
<td>C20 (05091400)</td>
<td>Célé</td>
<td>Le Trioulo (15)</td>
<td>Pont des Aurières</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C40</td>
<td>Célé</td>
<td>Bagnac sur Célé (46)</td>
<td>Amont de Bagnac</td>
<td></td>
<td></td>
<td>2000-2001</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C70</td>
<td>Célé</td>
<td>Bagnac sur Célé (46)</td>
<td>Amont carrières RD</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C90</td>
<td>Célé</td>
<td>St Jean Mirabelle (46)</td>
<td>Amont confluent Bervezou</td>
<td></td>
<td></td>
<td>2000-2001</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C100</td>
<td>Célé</td>
<td>Viazac (46)</td>
<td>Amont Buzac RD</td>
<td></td>
<td></td>
<td>2000-2001</td>
</tr>
<tr>
<td>RCD 46</td>
<td>C120 (05091090)</td>
<td>Célé</td>
<td>Figeac (46)</td>
<td>Captage AEP Prentegarde</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C130</td>
<td>Célé</td>
<td>Figeac (46)</td>
<td>Plan d'eau du Surgie</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C150</td>
<td>Célé</td>
<td>Figeac (46)</td>
<td>Aval ancien pont D662 RG</td>
<td></td>
<td></td>
<td>2000-2001</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C170</td>
<td>Célé</td>
<td>Figeac (46)</td>
<td>Amont rejet STEP</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C190 (05091000)</td>
<td>Célé</td>
<td>Figeac (46)</td>
<td>Pont D93 Merlançon</td>
<td></td>
<td></td>
<td>2000-2003</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C210</td>
<td>Célé</td>
<td>Bédier (46)</td>
<td>Pont D18</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C240</td>
<td>Célé</td>
<td>Corn (46)</td>
<td>Aval de Corn</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C270</td>
<td>Célé</td>
<td>Brengues (46)</td>
<td>Aval pont de la D38</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C280</td>
<td>Célé</td>
<td>St Sulipice (46)</td>
<td>Face camping municipal</td>
<td></td>
<td></td>
<td>2000-2003</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C300</td>
<td>Célé</td>
<td>Marcilhac sur Célé (46)</td>
<td>Aval de Marcilhac</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C310</td>
<td>Célé</td>
<td>Sauilac sur Célé (46)</td>
<td>Plage de Sauliac</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C320</td>
<td>Célé</td>
<td>Ornic (46)</td>
<td>Base nautique amis du Célé</td>
<td></td>
<td></td>
<td>2000-2003</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C330 (05090000)</td>
<td>Célé</td>
<td>Cabrerets (46)</td>
<td>Pont de Cabrerets</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>C350</td>
<td>Célé</td>
<td>Cabrerets (46)</td>
<td>Aval futur rejet STEP</td>
<td></td>
<td></td>
<td>2002-2005</td>
</tr>
<tr>
<td>RCD 15</td>
<td>RAN10 (05091500)</td>
<td>Rance</td>
<td>Maurs (15)</td>
<td>Amont de Maurs</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCD 15</td>
<td>RAN30 (05091450)</td>
<td>Rance</td>
<td>Maurs (15)</td>
<td>Aval de Maurs</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>BER05</td>
<td>Bervezou</td>
<td>Viazac (46)</td>
<td>Pont D76</td>
<td></td>
<td></td>
<td>2000-2001</td>
</tr>
<tr>
<td>RCD 46</td>
<td>BER10 (05091210)</td>
<td>Bervezou</td>
<td>Linac (46)</td>
<td>Amont confluence</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>DRA05</td>
<td>Drauzou</td>
<td>Camburat (46)</td>
<td>Amont Lissac et Mouret</td>
<td></td>
<td></td>
<td>2001-2005</td>
</tr>
<tr>
<td>RCD 46</td>
<td>DRA10 (05091020)</td>
<td>Drauzou</td>
<td>Camboult (46)</td>
<td>Amont confluent Célé</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>VEY10</td>
<td>Veyre</td>
<td>Linac</td>
<td>Amont confluence</td>
<td></td>
<td></td>
<td>2000-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>SP10</td>
<td>Saint Perdoux</td>
<td>Saint Perdoux</td>
<td>Amont confluence</td>
<td></td>
<td></td>
<td>2003-2005</td>
</tr>
<tr>
<td>RCDLA 46</td>
<td>Cres100</td>
<td>Résurgence</td>
<td>Corn (46)</td>
<td>Aval grotte</td>
<td></td>
<td></td>
<td>2000-2001</td>
</tr>
</tbody>
</table>

Sources : SATESE du Lot

Légende

Réseau

<table>
<thead>
<tr>
<th>Intitulé complet</th>
<th>Nbre de stations concerné</th>
<th>Principales altérations qualifiées</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCDLA 46</td>
<td>Réseau Complémentaire Départemental Loisirs Aquatiques Lot</td>
<td>26</td>
</tr>
<tr>
<td>RCD 46</td>
<td>Réseau Complémentaire Départemental Lot</td>
<td>3</td>
</tr>
<tr>
<td>RNB+RCD 46</td>
<td>Réseau National de Bassin complété par le Réseau Complémentaire Départemental Lot</td>
<td>2</td>
</tr>
<tr>
<td>RCD 15</td>
<td>Réseau Complémentaire Départemental Cantal</td>
<td>5</td>
</tr>
</tbody>
</table>
II. LES RESULTATS PAR STATION

Le Céler à Cabrerets – C330 / 5090000

Qualité générale

![Bar chart showing quality indices for various parameters over years]

Qualité complémentaire

![Bar chart showing quality indices for various parameters over years]

Qualité bactériologique

![Bar chart showing quality indices for various parameters over years]
Qualité générale

![Graphique de Qualité générale avec les paramètres MOOX, AZOT, NITR, PHOS et les indices de qualité pour les années 2000 à 2005.]

Qualité complémentaire

![Graphique de Qualité complémentaire avec les paramètres PAES, MINE, ACID, TEMP et les indices de qualité pour les années 2000 à 2005.]

Qualité bactériologique

![Graphique de Qualité bactériologique avec le paramètre BACT et les indices de qualité pour les années 2000 à 2005.]

Le Célé en amont de Figeac – C120 / 5091090
Qualité générale

![Graphique montrant les indices de qualité pour divers paramètres tels que MOOX, AZOT, NITR et PHOS pour les années 2000 à 2005. Les indices de qualité varient de 0 à 100 pour chaque paramètre.]

Qualité complémentaire

![Graphique montrant les indices de qualité pour divers paramètres tels que PAES, MINE, ACID et TEMP pour les années 2000 à 2005. Les indices de qualité varient de 0 à 100 pour chaque paramètre.]

Qualité bactériologique

![Graphique montrant les indices de qualité pour le paramètre BACT pour les années 2000 à 2005. Les indices de qualité varient de 0 à 30 pour le paramètre BACT. Le nombre de mois avec une qualité bactériologique inférieure à 10 est indiqué pour chaque année.]
Qualité générale

![Graphique de la qualité générale pour les paramètres MOOX, AZOT, NITR et PHOS en 2000 à 2005.]

Qualité complémentaire

![Graphique de la qualité complémentaire pour les paramètres PAES, MINE, ACID et TEMP en 2000 à 2005.]

Qualité bactériologique

![Graphique de la qualité bactériologique pour le paramètre BACT en 2000 à 2005.]

Le Bervezou en amont de la confluence - BER10 / 5091210
La Rance en aval de Maurs - RAN30 / 5091450

Qualité générale

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>MOOX</th>
<th>AZOT</th>
<th>NITR</th>
<th>PHOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>67</td>
<td>71</td>
<td>62</td>
<td>73</td>
</tr>
<tr>
<td>2001</td>
<td>61</td>
<td>55</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>2002</td>
<td>33</td>
<td>33</td>
<td>53</td>
<td>62</td>
</tr>
<tr>
<td>2003</td>
<td>62</td>
<td>68</td>
<td>76</td>
<td>62</td>
</tr>
<tr>
<td>2004</td>
<td>55</td>
<td>58</td>
<td>58</td>
<td>62</td>
</tr>
<tr>
<td>2005</td>
<td>62</td>
<td>58</td>
<td>57</td>
<td>62</td>
</tr>
</tbody>
</table>

Qualité complémentaire

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>PAES</th>
<th>MINE</th>
<th>ACID</th>
<th>TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>77</td>
<td>79</td>
<td>84</td>
<td>95</td>
</tr>
<tr>
<td>2001</td>
<td>79</td>
<td>78</td>
<td>87</td>
<td>96</td>
</tr>
<tr>
<td>2002</td>
<td>77</td>
<td>78</td>
<td>80</td>
<td>96</td>
</tr>
<tr>
<td>2003</td>
<td>77</td>
<td>78</td>
<td>80</td>
<td>98</td>
</tr>
<tr>
<td>2004</td>
<td>27</td>
<td>19</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>2005</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>60</td>
</tr>
</tbody>
</table>

Qualité bactériologique

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>BACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
</tr>
</tbody>
</table>
ANNEXE 2 : Analyse de l'impact de la qualité des eaux sur les usages

Sources : SATESE du Lot
ANNEXE 3 : Données du suivi hydrologique

Sources : Banque HYDRO
Écoulements mensuels (naturels) et données calculées sur 36 ans

<table>
<thead>
<tr>
<th></th>
<th>janv.</th>
<th>fév.</th>
<th>mars</th>
<th>avril</th>
<th>mai</th>
<th>juin</th>
<th>juil.</th>
<th>août</th>
<th>sept</th>
<th>oct.</th>
<th>nov</th>
<th>déc</th>
<th>Année</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débits (m³/s)</td>
<td>31.80</td>
<td>35.30</td>
<td>26.40</td>
<td>24.70</td>
<td>21.50</td>
<td>11.40</td>
<td>0.250</td>
<td>3.780</td>
<td>4.880</td>
<td>11.20</td>
<td>18.70</td>
<td>30.00</td>
<td>18.70</td>
</tr>
<tr>
<td>Qsp (l/s/km²)</td>
<td>26.7</td>
<td>29.6</td>
<td>22.1</td>
<td>20.7</td>
<td>18.0</td>
<td>9.5</td>
<td>5.2</td>
<td>3.2</td>
<td>4.1</td>
<td>9.4</td>
<td>15.7</td>
<td>25.1</td>
<td>15.7</td>
</tr>
<tr>
<td>Lame d'eau (mm)</td>
<td>71</td>
<td>74</td>
<td>50</td>
<td>53</td>
<td>48</td>
<td>24</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>40</td>
<td>67</td>
<td>407</td>
</tr>
</tbody>
</table>

Modules interannuels (loi de Gauss - septembre à aout) et données calculées sur 36 ans

<table>
<thead>
<tr>
<th></th>
<th>fréquence</th>
<th>débits (m³/s)</th>
<th>quinquennale sèche</th>
<th>médiane</th>
<th>quinquennale humide</th>
</tr>
</thead>
<tbody>
<tr>
<td>module (moyenne)</td>
<td>18.70 [17.00;20.50]</td>
<td>14.00 [12.00;16.00]</td>
<td>19.00 [15.00;24.00]</td>
<td>24.00 [22.00;26.00]</td>
<td></td>
</tr>
</tbody>
</table>

Basses eaux (loi de Galton - janvier à décembre) et données calculées sur 36 ans

<table>
<thead>
<tr>
<th></th>
<th>fréquence</th>
<th>VCN3 (m³/s)</th>
<th>VCN10 (m³/s)</th>
<th>QMNA (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>quinquennale sèche</td>
<td>1.000 [0.850;1.200]</td>
<td>1.200 [1.000;1.400]</td>
<td>1.700 [1.500;2.000]</td>
<td></td>
</tr>
</tbody>
</table>

Crues (loi de Gumbel - septembre à aout) et données calculées sur 34 ans

<table>
<thead>
<tr>
<th></th>
<th>fréquence</th>
<th>QJ (m³/s)</th>
<th>QIX (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>biennale</td>
<td>210.0 [190.0;240.0]</td>
<td>260.0 [230.0;290.0]</td>
<td></td>
</tr>
<tr>
<td>quinquennale sèche</td>
<td>300.0 [270.0;350.0]</td>
<td>370.0 [330.0;430.0]</td>
<td></td>
</tr>
<tr>
<td>décanne sèche</td>
<td>360.0 [320.0;430.0]</td>
<td>440.0 [400.0;530.0]</td>
<td></td>
</tr>
<tr>
<td>vécennale</td>
<td>420.0 [370.0;500.0]</td>
<td>520.0 [480.0;620.0]</td>
<td></td>
</tr>
<tr>
<td>cinquantennale</td>
<td>490.0 [440.0;600.0]</td>
<td>610.0 [530.0;740.0]</td>
<td></td>
</tr>
<tr>
<td>centennale</td>
<td>non calculé</td>
<td>non calculé</td>
<td>non calculé</td>
</tr>
</tbody>
</table>

Maximums connus (par la banque HYDRO)

hauteur maximale instantanée (cm)	647	7 février 1974 03:10
débit instanciate maximal (m³/s)	517.0 #	4 décembre 2003 15:38
débit journalier maximal (m³/s)	371.0 #	14 décembre 1981

Débits classés et données calculées sur 12825 jours

| fréquence | 0.99 | 0.98 | 0.95 | 0.90 | 0.80 | 0.70 | 0.60 | 0.50 | 0.40 | 0.30 | 0.20 | 0.10 | 0.05 | 0.02 | 0.01 |
| | 149.0 | 108.0 | 83.30 | 42.60 | 26.10 | 18.10 | 13.30 | 9.660 | 6.810 | 4.730 | 3.270 | 2.260 | 1.710 | 1.310 | 1.100 |
SYNTHESE

données hydrologiques de synthèse (1950 - 2004)
Calculées le 15/08/2006; Intervalle de confiance : 95 %

<table>
<thead>
<tr>
<th>écoulements mensuels (naturels)</th>
<th>données calculées sur 55 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debits (m³/s)</td>
<td>Debits (m³/s)</td>
</tr>
<tr>
<td>janv.</td>
<td>fév.</td>
</tr>
<tr>
<td>21.60 #</td>
<td>23.30 #</td>
</tr>
<tr>
<td>Qsp (l/s/km²)</td>
<td>Qsp (l/s/km²)</td>
</tr>
<tr>
<td>31.9 #</td>
<td>34.5 #</td>
</tr>
<tr>
<td>Lame d'eau (mm)</td>
<td>Lame d'eau (mm)</td>
</tr>
<tr>
<td>85 #</td>
<td>68 #</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>modules interannuels (loi de Gauss - septembre a aout)</th>
<th>données calculées sur 55 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (moyenne)</td>
<td>Module (moyenne)</td>
</tr>
<tr>
<td>12.80 [11.90,13.30]</td>
<td>10.00 [9.00,11.00]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basses eaux (loi de Galton - janvier a décembre)</th>
<th>données calculées sur 55 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence</td>
<td>Vincent (m³/s)</td>
</tr>
<tr>
<td>biennale</td>
<td>1.400 [1.200,1.600]</td>
</tr>
<tr>
<td>quinquennale sèche</td>
<td>0.830 [0.650,0.960]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>crues (loi de Gumbel - septembre a aout)</th>
<th>données calculées sur 53 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence</td>
<td>QJ (m³/s)</td>
</tr>
<tr>
<td>biennale</td>
<td>100.0 [98.00,110.0]</td>
</tr>
<tr>
<td>quinquennale</td>
<td>140.0 [130.0,150.0]</td>
</tr>
<tr>
<td>décennale</td>
<td>160.0 [150.0,180.0]</td>
</tr>
<tr>
<td>vicennale</td>
<td>160.0 [170.0,210.0]</td>
</tr>
<tr>
<td>centennale</td>
<td>210.0 [190.0,240.0]</td>
</tr>
</tbody>
</table>

maximums connus (par la banque HYDRO)

Hauteur maximale instantanée (cm)	385	3 décembre 2003 23:43
Débit instantané maximal (m³/s)	191.0 #	3 décembre 2003 23:43
Débit journalier maximal (m³/s)	418.0	13 décembre 1962

débits classés

<table>
<thead>
<tr>
<th>Fréquence</th>
<th>0.99</th>
<th>0.98</th>
<th>0.95</th>
<th>0.90</th>
<th>0.80</th>
<th>0.70</th>
<th>0.60</th>
<th>0.50</th>
<th>0.40</th>
<th>0.30</th>
<th>0.20</th>
<th>0.10</th>
<th>0.05</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit (m³/s)</td>
<td>75.10</td>
<td>60.00</td>
<td>49.10</td>
<td>27.60</td>
<td>18.30</td>
<td>13.50</td>
<td>10.30</td>
<td>7.750</td>
<td>5.660</td>
<td>4.430</td>
<td>2.920</td>
<td>2.010</td>
<td>1.570</td>
<td>1.050</td>
<td>0.613</td>
</tr>
</tbody>
</table>
SYNTHÈSE

donnees hydrologiques de synthèse (1997 - 2006)
Calculées le 15/08/2006; Intervalle de confiance : 95 %

<table>
<thead>
<tr>
<th>écoulements mensuels (naturels)</th>
<th>données non calculées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débits (m³/s)</td>
<td></td>
</tr>
<tr>
<td>Qsp (l/s/km²)</td>
<td></td>
</tr>
<tr>
<td>Lame d'eau (mm)</td>
<td></td>
</tr>
</tbody>
</table>

![Graphique des débits mensuels](image)

<table>
<thead>
<tr>
<th>modules interannuels (loi de Gauss - septembre à août)</th>
<th>données non calculées</th>
</tr>
</thead>
<tbody>
<tr>
<td>module (moyenne)</td>
<td></td>
</tr>
<tr>
<td>fréquence</td>
<td></td>
</tr>
<tr>
<td>quinquennale sèche</td>
<td></td>
</tr>
<tr>
<td>médiane</td>
<td></td>
</tr>
<tr>
<td>quinquennale humide</td>
<td></td>
</tr>
<tr>
<td>débits (m³/s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basses eaux (loi de Galton - janvier à décembre)</th>
<th>données non calculées</th>
</tr>
</thead>
<tbody>
<tr>
<td>fréquence</td>
<td></td>
</tr>
<tr>
<td>biennale</td>
<td></td>
</tr>
<tr>
<td>quinquennale sèche</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>crues (loi de Gumbel - septembre à août)</th>
<th>données non calculées</th>
</tr>
</thead>
<tbody>
<tr>
<td>fréquence</td>
<td></td>
</tr>
<tr>
<td>QJ (m³/s)</td>
<td></td>
</tr>
<tr>
<td>QIX (m³/s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>maximums connus (par la banque HYDRO)</th>
<th>données calculées sur 2412 jours</th>
</tr>
</thead>
<tbody>
<tr>
<td>hauteur maximale instantanée (mm)</td>
<td>998000</td>
</tr>
<tr>
<td>débit instantané maximal (m³/s)</td>
<td>90.80 #</td>
</tr>
<tr>
<td>débit journalier maximal (m³/s)</td>
<td>49.70 #</td>
</tr>
</tbody>
</table>

débits classés															
fréquence	0.99	0.98	0.95	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01
débit (m³/s)	15.00	11.80	8.380	6.470	4.700	3.650	2.750	2.030	1.420	1.100	0.824	0.454	0.266	0.219	0.167
ANNEXE 4 : Liste des ZNIEFF

Sources : DIREN Auvergne, DIREN Midi-Pyrénées
<table>
<thead>
<tr>
<th>IDENTIFIANT</th>
<th>DENOMINATION</th>
<th>TYPE</th>
<th>ALTITUDE</th>
<th>SURFACE</th>
<th>REDACTEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_SPN</td>
<td>LB_ZN</td>
<td>ZONE</td>
<td>MINI</td>
<td>MAXI</td>
<td></td>
</tr>
<tr>
<td>730010301</td>
<td>07010003</td>
<td></td>
<td>140</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>730010302</td>
<td>00000732</td>
<td></td>
<td>160</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>730010305</td>
<td>00000734</td>
<td></td>
<td>200</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>730010306</td>
<td>00000733</td>
<td></td>
<td>200</td>
<td>350</td>
<td>398.29</td>
</tr>
<tr>
<td>730010308</td>
<td>07010002</td>
<td></td>
<td>140</td>
<td>280</td>
<td>50.06</td>
</tr>
<tr>
<td>730010309</td>
<td>07000004</td>
<td></td>
<td>120</td>
<td>280</td>
<td>64.15</td>
</tr>
<tr>
<td>730010310</td>
<td>07010001</td>
<td></td>
<td>140</td>
<td>340</td>
<td>74.82</td>
</tr>
<tr>
<td>730010311</td>
<td>00000735</td>
<td></td>
<td>240</td>
<td>360</td>
<td>1019.19</td>
</tr>
<tr>
<td>730010320</td>
<td>07010004</td>
<td></td>
<td>160</td>
<td>280</td>
<td>11.24</td>
</tr>
<tr>
<td>730010321</td>
<td>07010005</td>
<td></td>
<td>200</td>
<td>300</td>
<td>20.36</td>
</tr>
<tr>
<td>730010322</td>
<td>07010006</td>
<td></td>
<td>200</td>
<td>300</td>
<td>94.42</td>
</tr>
<tr>
<td>730010323</td>
<td>00000736</td>
<td></td>
<td>180</td>
<td>330</td>
<td>700.58</td>
</tr>
<tr>
<td>730010330</td>
<td>00000749</td>
<td></td>
<td>340</td>
<td>460</td>
<td>2377.46</td>
</tr>
<tr>
<td>730011000</td>
<td>07010007</td>
<td></td>
<td>180</td>
<td>300</td>
<td>17.88</td>
</tr>
<tr>
<td>730011001</td>
<td>07010008</td>
<td></td>
<td>180</td>
<td>320</td>
<td>21.54</td>
</tr>
<tr>
<td>IDENTIFIANT</td>
<td>DENOMINATION</td>
<td>TYPE</td>
<td>ALTITUDE</td>
<td>SURFACE</td>
<td>REDACTEUR</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>ID_SPN</td>
<td>NM_REGZN</td>
<td>LB_ZN</td>
<td>ZONE</td>
<td>MINI</td>
<td>MAXI</td>
</tr>
<tr>
<td>16</td>
<td>730011002</td>
<td>07010009</td>
<td>PAROI ROCHEUSE DE SALEBIO</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>17</td>
<td>730011003</td>
<td>07010010</td>
<td>MARECAGE DE SAINTE EULALIE</td>
<td>1</td>
<td>170</td>
</tr>
<tr>
<td>18</td>
<td>730011004</td>
<td>07010011</td>
<td>PAROI ROCHEUSE DE ROQUEFORT</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>19</td>
<td>730011005</td>
<td>00000750</td>
<td>FRICHES ET BOIS DU PECH DES MAYRIGNACS, DU LIGOUSSOU ET DU BOIS DE ROQUEFORT</td>
<td>1</td>
<td>260</td>
</tr>
<tr>
<td>20</td>
<td>730011006</td>
<td>00000751</td>
<td>PELOUSES, FRICHES ET BOIS DU PECH RIAN ET DU TALOU</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>21</td>
<td>730011007</td>
<td>00000752</td>
<td>FRICHES ET BOIS DU PECH MIQUEL, DU TOURROUNDET ET DU BOIS DE MARS</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>22</td>
<td>730011008</td>
<td>00000753</td>
<td>ETANGS DES CARRIERES DE PUYBLANC</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>25</td>
<td>730011012</td>
<td>00000759</td>
<td>CHATEAU D'ASSIER</td>
<td>1</td>
<td>340</td>
</tr>
<tr>
<td>26</td>
<td>730011014</td>
<td>00000769</td>
<td>BOIS DE FELZINS, BOIS ET ROCHERS DU ROC DE GOR ET DU PECH DE POUTOU</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>27</td>
<td>730014504</td>
<td>07010012</td>
<td>PAROI ROCHEUSE DE CONDUCHE</td>
<td>1</td>
<td>140</td>
</tr>
<tr>
<td>28</td>
<td>730014507</td>
<td>07010014</td>
<td>PAROI ROCHEUSE DE MARCILLAC SUR CELE</td>
<td>1</td>
<td>180</td>
</tr>
<tr>
<td>29</td>
<td>730014508</td>
<td>07010013</td>
<td>PAROI ROCHEUSE ET VERSANT ROCAILLEUX DE DOUJAC</td>
<td>1</td>
<td>180</td>
</tr>
</tbody>
</table>

ZNIEFF TYPE 1 (CANTAL):

<table>
<thead>
<tr>
<th>IDENTIFIANTS</th>
<th>NOM</th>
<th>TYPE</th>
<th>SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_SPN</td>
<td>ID_DIREN</td>
<td>GEN</td>
<td>SIG</td>
</tr>
<tr>
<td>1</td>
<td>830016054</td>
<td>00007040</td>
<td>VALLEE DU RANCE</td>
</tr>
<tr>
<td>2</td>
<td>830009035</td>
<td>00220002</td>
<td>ENVIRONS DE ROQUETANIÈRE</td>
</tr>
<tr>
<td>3</td>
<td>830009036</td>
<td>00220003</td>
<td>HAUTE VALLEE DU CELE</td>
</tr>
<tr>
<td>4</td>
<td>830009915</td>
<td>00220001</td>
<td>BUTTES CALCAIRES DU BASSIN DE MAURS</td>
</tr>
</tbody>
</table>
ZNIEFF TYPE 2 (LOT):

<table>
<thead>
<tr>
<th>IDENTIFIANTS</th>
<th>DENOMINATION</th>
<th>TYPE</th>
<th>ALTITUDE</th>
<th>SURFACE</th>
<th>REDACTEURS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_SPN</td>
<td>NM_REGZN</td>
<td>LB_ZN</td>
<td>ZONE</td>
<td>MINI</td>
<td>MAXI</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>1 730003004</td>
<td>07000000</td>
<td>VALLEE DU LOT</td>
<td>2</td>
<td>120</td>
<td>380</td>
</tr>
<tr>
<td>2 730003004</td>
<td>07000000</td>
<td>VALLEE DU LOT</td>
<td>2</td>
<td>120</td>
<td>380</td>
</tr>
<tr>
<td>3 730003005</td>
<td>07010000</td>
<td>VALLEE DU CELE</td>
<td>2</td>
<td>120</td>
<td>330</td>
</tr>
</tbody>
</table>

ZNIEFF TYPE 2 (CANTAL):

<table>
<thead>
<tr>
<th>IDENTIFIANTS</th>
<th>NOM</th>
<th>TYPE</th>
<th>SURFACE?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_SPN</td>
<td>ID_DIRN</td>
<td>GEN</td>
<td>SIG</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>1 830007464</td>
<td>00220000</td>
<td>VALLEE DU LOT.BASSIN DE MAURS</td>
<td>2</td>
</tr>
</tbody>
</table>
ANNEXE 5 : Données sur la qualité des eaux distribuées

Sources :
- DDASS Cantal (2004-2005)
- DDASS du Lot (2002)
Qualité de l'eau distribuée dans le département du Lot

période: du 01.01.02 au 31.12.02

<p>	Nom de l'Unité de Distribution	Dureté Moy (TH en °F) Commentaires	pH Moy	Turbidity Maxi (en NTU) Commentaires	Turbidity Moy (en NTU)	Nitrates Maxi (en mg/l) Commentaires	Nitrates Moy (en mg/l) Commentaires	Nitrates (NO₃) Commentaires	nb prélèvements bactériologiques	% Non-conformité bactériologique	Bactériologie Commentaires	Somme Maxi des Triazines (µg/l) Commentaires	Triazines Commentaires
ANGLADES TANIES - 34	Eau très calcaire. 7.3	0.5	0.2	0	0	Toutes les valeurs sont conformes à la norme.	5	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.			
BAGNAC SUR CELE-ST CIRGUES	7.3	Eau très peu calcaire. 7.8	0.8	0.25	10.1	9.55	Toutes les valeurs sont conformes à la norme.	10	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
BETILLE LONGUECOSTE +	1.73	Eau très peu calcaire. 7.5	0.62	0.29	10.4	10	Toutes les valeurs sont conformes à la norme.	8	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
BOUZIES	27.7	Eau calcaire. 7.3	0.13	0.05	17.7	17.7	Toutes les valeurs sont conformes à la norme.	5	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
BRENGUES	28.9	Eau calcaire. 7.4	2.19	0.49	9.8	9.8	Toutes les valeurs sont conformes à la norme.	5	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
BULLAC	34.4	Eau très calcaire. 7.6	0.55	0.27	12.9	10.85	Toutes les valeurs sont conformes à la norme.	6	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CABRERETS	30.6	Eau très calcaire. 7.3	0.7	0.61	8.7	8.7	Toutes les valeurs sont conformes à la norme.	5	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CAJARC	34.7	Eau très calcaire. 7.4	0.49	0.28	10.3	8.23	Toutes les valeurs sont conformes à la norme.	9	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CAMBOULT	49.2	Eau très calcaire. 7.6	0.34	0.22	10.6	9.2	Toutes les valeurs sont conformes à la norme.	6	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CAMBURAT-PLANIOLES	35.5	Eau très calcaire. 7.5	0.53	0.32	9	8.25	Toutes les valeurs sont conformes à la norme.	9	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CAPDENAC-BOUSQUET	24.23	Eau calcaire. 7.6	0.55	0.22	7.9	5.97	Toutes les valeurs sont conformes à la norme.	9	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CAUSE SUD DE GRAMAT	34.6	Eau très calcaire. 7.6	0.3	1.24	16.7	10.75	Toutes les valeurs sont conformes à la norme.	6	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
CREGOLS	35.52	Pas de mesure sur la période	0.3	0.23	14.3	14.3	Pas de mesure sur la période.	3	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
ESPAGNAC	35.6	Eau très calcaire. 7.2	1.82	0.82	6.7	6.7	Toutes les valeurs sont conformes à la norme.	5	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
FAYCELLES FRONTENAC	28.35	Eau calcaire. 7.6	0.46	0.15	20.5	19.1	Toutes les valeurs sont conformes à la norme.	6	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
FELZINS LENTILLAC	1.67	Eau très peu calcaire. 7.9	0.83	0.41	9	8.6	Toutes les valeurs sont conformes à la norme.	8	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
FONS	32.7	Eau très calcaire. 7.5	0.45	0.17	3.7	3.7	Toutes les valeurs sont conformes à la norme.	5	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
FONT POLEMIE	23.21	Eau calcaire. 7.7	3.5	0.58	9.8	8.23	Toutes les valeurs sont conformes à la norme.	15	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.		
GABANELLE	2.1	Eau très peu calcaire. 7.5	0.57	0.24	12	10.73	Toutes les valeurs sont conformes à la norme.	11	0	0	Eau de bonne qualité. Pas de mesure de pesticide sur la période.	</p>	
<table>
<thead>
<tr>
<th>Nom de l'Unité de Distribution</th>
<th>Durée Moy (TH en °F)</th>
<th>Dureté (TH) Commentaire</th>
<th>pH Moy</th>
<th>Turbidity Maxi (en NTU)</th>
<th>Turbidity Moy (en NTU)</th>
<th>Nitrates Maxi (en mg/l)</th>
<th>Nitrates Moy (en mg/l)</th>
<th>Nitrates (NO3) Commentaires</th>
<th>Nb prélets bacterio</th>
<th>% Non-conform bacterio</th>
<th>Bactériologie Commentaires</th>
<th>Somme Maxi des Triazines en µg/l</th>
<th>Triazines Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>GORSES</td>
<td>2.6</td>
<td>Eau très peu calcaire.</td>
<td>5.62</td>
<td>0.21</td>
<td>0.08</td>
<td>20.9</td>
<td>20.9</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>6</td>
<td>16.67</td>
<td>Eau présentant une contamination périodique.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>IMPORT CAUSSES</td>
<td>34.6</td>
<td>Eau très calcaire.</td>
<td>7.35</td>
<td>3.14</td>
<td>1.34</td>
<td>14.4</td>
<td>10.2</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>5</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>IMPORT SUD SEGALA</td>
<td>1.73</td>
<td>Eau très peu calcaire.</td>
<td>7.36</td>
<td>0.5</td>
<td>0.24</td>
<td>10.4</td>
<td>10</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>8</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>LA DOUX</td>
<td>36.15</td>
<td>Eau très calcaire.</td>
<td>7.73</td>
<td>0.87</td>
<td>0.4</td>
<td>13.3</td>
<td>11.55</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>8</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>LA PESCALERIE</td>
<td>29.5</td>
<td>Eau calcaire.</td>
<td>7.46</td>
<td>1.29</td>
<td>0.37</td>
<td>11.6</td>
<td>10.1</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>8</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>LARNAGOL</td>
<td>20.4</td>
<td>Eau calcaire.</td>
<td>7.5</td>
<td>0.12</td>
<td>0.06</td>
<td>8.5</td>
<td>8.5</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>6</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>LE BOUYSSOU</td>
<td>1.8</td>
<td>Eau très peu calcaire.</td>
<td>6.74</td>
<td>3.18</td>
<td>1.39</td>
<td>5.9</td>
<td>5.9</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>6</td>
<td>16.67</td>
<td>Eau présentant une contamination périodique.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>LISSAC ET MOURET</td>
<td>43.25</td>
<td>Eau très calcaire.</td>
<td>7.34</td>
<td>2.31</td>
<td>0.56</td>
<td>13.4</td>
<td>13.2</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>7</td>
<td>14.29</td>
<td>Eau présentant une contamination périodique.</td>
<td>mesurés et non détectés</td>
<td></td>
</tr>
<tr>
<td>LONGUECOSITE</td>
<td>1.73</td>
<td>Eau très peu calcaire.</td>
<td>7.53</td>
<td>0.6</td>
<td>0.28</td>
<td>10.4</td>
<td>10</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>13</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>PR DU TOLERME</td>
<td>1.67</td>
<td>Eau très peu calcaire.</td>
<td>8.13</td>
<td>1</td>
<td>0.36</td>
<td>9</td>
<td>8.6</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>15</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>PRENTEGAR DE</td>
<td>3.33</td>
<td>Eau très peu calcaire.</td>
<td>7.6</td>
<td>1.5</td>
<td>0.25</td>
<td>12.8</td>
<td>9.07</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>22</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>PRENTEGAR DE+GABANE LLE</td>
<td>3.03</td>
<td>Eau très peu calcaire.</td>
<td>7.57</td>
<td>5.7</td>
<td>0.61</td>
<td>12.8</td>
<td>9.57</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>15</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>PUIT PRES DU CAMPING</td>
<td>23.8</td>
<td>Eau calcaire.</td>
<td>7.29</td>
<td>0.08</td>
<td>0.03</td>
<td>7.6</td>
<td>7.6</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>5</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>Pas de mesure de pesticide sur la période.</td>
<td></td>
</tr>
<tr>
<td>SAINT CHELS-ACHAT</td>
<td>34.7</td>
<td>Eau très calcaire.</td>
<td>7.59</td>
<td>0.49</td>
<td>0.26</td>
<td>10.3</td>
<td>8.23</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>8</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>mesurés et non détectés</td>
<td></td>
</tr>
<tr>
<td>SAINT GERY</td>
<td>29.6</td>
<td>Eau calcaire.</td>
<td>7.07</td>
<td>0.7</td>
<td>0.2</td>
<td>37.6</td>
<td>37.15</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>7</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Qualité de l'eau distribuée dans le département de l'Aveyron

- **ST SANTIN**
 - n.d.
 - 7.8
 - n.d.
 - n.d.
 - 10.6
 - 10.6
 - Toutes les valeurs sont conformes à la norme.
 - 0
 - 0
 - Eau de bonne qualité.
 - Pas de mesure de pesticide sur la période.

- **NORD DECAZEVILLE**
 - 7.88
 - Eau très peu calcaire.
 - 7.3
 - n.d.
 - n.d.
 - 11.1
 - 5.63
 - Toutes les valeurs sont conformes à la norme.
 - 1
 - 6.3
 - Eau présentant une contamination ponctuelle.
 - Pas de mesure de pesticide sur la période.

Période: du 01.01.02 au 31.12.02
Qualité de l'eau distribuée dans le département du Cantal

période: du 01.01.01.04 au 04.08.2005

<table>
<thead>
<tr>
<th>Nom de l'Unité de Distribution</th>
<th>Dureté Moy (TH en °F)</th>
<th>Dureté (TH en °F) Comment/R</th>
<th>pH Moy</th>
<th>Turbidité Maxi (en NTU)</th>
<th>Turbidité Moy (en NTU)</th>
<th>Nitrates Maxi (en mg/l)</th>
<th>Nitrates Moy (en mg/l)</th>
<th>Nitrates (NO3) Commentaires</th>
<th>nb prélèts</th>
<th>% Non-conform bactério</th>
<th>Bactériologie Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camping coursavy Cassaniouse</td>
<td>4.7</td>
<td>Eau très peu calcaire.</td>
<td>7</td>
<td>0.85</td>
<td>0.51</td>
<td><1</td>
<td><0,75</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>6</td>
<td>33.33</td>
<td>Eau présentant une contamination fréquente.</td>
</tr>
<tr>
<td>Commune de Boisset 3.8</td>
<td>2.3</td>
<td>Eau très peu calcaire.</td>
<td>6.29</td>
<td>1.1</td>
<td>0.4</td>
<td>27</td>
<td>13.19</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>26</td>
<td>11.54</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Commune de Calviset 1.8</td>
<td>1.8</td>
<td>Eau très peu calcaire.</td>
<td>5.96</td>
<td>0.81</td>
<td>0.27</td>
<td>12</td>
<td>10.23</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>12</td>
<td>16.67</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Commune de Cassaniouze 2.1</td>
<td>1.4</td>
<td>Eau très peu calcaire.</td>
<td>6.12</td>
<td>1.3</td>
<td>0.35</td>
<td>13</td>
<td>6.74</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>19</td>
<td>15.79</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Communes de Fournoules 3.1</td>
<td>3.1</td>
<td>Eau très peu calcaire.</td>
<td>7.11</td>
<td>0.45</td>
<td>0.34</td>
<td>11</td>
<td>11</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>4</td>
<td>25</td>
<td>Eau présentant une contamination fréquente.</td>
</tr>
<tr>
<td>Communes de Lacapelle-del-Frais 2.2</td>
<td>2.2</td>
<td>Eau très peu calcaire.</td>
<td>5.85</td>
<td>0.67</td>
<td>0.19</td>
<td>24</td>
<td>16.89</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>20</td>
<td>35</td>
<td>Eau présentant une contamination fréquente.</td>
</tr>
<tr>
<td>Commune de Leynac 5.9</td>
<td>5.9</td>
<td>Eau très peu calcaire.</td>
<td>6.59</td>
<td>0.8</td>
<td>0.27</td>
<td>19.4</td>
<td>13.75</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>20</td>
<td>10</td>
<td>Eau présentant une contamination ponctuelle.</td>
</tr>
<tr>
<td>Commune de Maroles 1.5</td>
<td>1.5</td>
<td>Eau très peu calcaire.</td>
<td>5.95</td>
<td>2.8</td>
<td>0.33</td>
<td>13</td>
<td>9.53</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>31</td>
<td>19.35</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Commune de Mauris 6.9</td>
<td>6.9</td>
<td>Eau très peu calcaire.</td>
<td>7.41</td>
<td>1.4</td>
<td>0.81</td>
<td>14</td>
<td>10.65</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>18</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Commune de Mourjou 4.5</td>
<td>4.5</td>
<td>Eau très peu calcaire.</td>
<td>7.23</td>
<td>0.94</td>
<td>0.58</td>
<td>10</td>
<td>9.8</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>6</td>
<td>16.67</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Commune de Quezac 2.3</td>
<td>2.3</td>
<td>Eau très peu calcaire.</td>
<td>7.24</td>
<td>2.1</td>
<td>0.92</td>
<td>12</td>
<td>10.9</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>7</td>
<td>14.29</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Commune de Roannes-St-mary 2.2</td>
<td>2.2</td>
<td>Eau très peu calcaire.</td>
<td>6.06</td>
<td>1.4</td>
<td>0.38</td>
<td>29</td>
<td>20</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>24</td>
<td>16.67</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Commune de Rouziers 5.7</td>
<td>5.7</td>
<td>Eau très peu calcaire.</td>
<td>7.53</td>
<td>1.9</td>
<td>0.69</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>5</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Commune de Sanzac-Veinazes 1</td>
<td>1</td>
<td>Eau très peu calcaire.</td>
<td>5.79</td>
<td>1</td>
<td>0.25</td>
<td>6.8</td>
<td>4.6</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>18</td>
<td>5.56</td>
<td>Eau présentant une contamination ponctuelle.</td>
</tr>
<tr>
<td>Commune de Senezergues 2</td>
<td>2</td>
<td>Eau très peu calcaire.</td>
<td>6.9</td>
<td>0.95</td>
<td>0.54</td>
<td>2.6</td>
<td>2.35</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>8</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Commune de Saint-Antoine 2.1</td>
<td>2.1</td>
<td>Eau très peu calcaire.</td>
<td>5.91</td>
<td>0.39</td>
<td>0.21</td>
<td>15</td>
<td>14.05</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>11</td>
<td>27.27</td>
<td>Eau présentant une contamination fréquente.</td>
</tr>
<tr>
<td>Commune de St-Julien de Toursac 7.71</td>
<td>7.71</td>
<td>1.2</td>
<td>0.7</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>5</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Commune de St-Mamet-la-Salvetat 3.25</td>
<td>3.25</td>
<td>Eau très peu calcaire.</td>
<td>7.27</td>
<td>2.2</td>
<td>0.56</td>
<td>12</td>
<td>8.3</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>20</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Commune du Trioulot 2.8</td>
<td>2.8</td>
<td>Eau très peu calcaire.</td>
<td>6.54</td>
<td>1.1</td>
<td>0.5</td>
<td>8.5</td>
<td>6.45</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>9</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Commune de Vitrac 1.8</td>
<td>1.8</td>
<td>Eau très peu calcaire.</td>
<td>5.83</td>
<td>0.62</td>
<td>0.28</td>
<td>27</td>
<td>16.83</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>35</td>
<td>14.29</td>
<td>Eau présentant une contamination périodique.</td>
</tr>
<tr>
<td>Fromagerie occitanes à St Mamet 2.3</td>
<td>2.3</td>
<td>Eau très peu calcaire.</td>
<td>7.29</td>
<td>5.3</td>
<td>1.81</td>
<td>16</td>
<td>12.73</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>17</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>S.I. de St Etienne / St Constant 1.7</td>
<td>1.7</td>
<td>Eau très peu calcaire.</td>
<td>7.37</td>
<td>3.9</td>
<td>1.07</td>
<td>11</td>
<td>10.5</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>15</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
<tr>
<td>Synd. De la Fontbelle 1.5</td>
<td>1.5</td>
<td>Eau très peu calcaire.</td>
<td>7.29</td>
<td>5.8</td>
<td>0.48</td>
<td>9.4</td>
<td>6.57</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>24</td>
<td>4.17</td>
<td>Eau présentant une contamination ponctuelle.</td>
</tr>
<tr>
<td>Synd. de St-Santin-de-Mauris/ Monmurat 1.9</td>
<td>1.9</td>
<td>Eau très peu calcaire.</td>
<td>7.32</td>
<td>1.2</td>
<td>0.63</td>
<td>12</td>
<td>10.95</td>
<td>Toutes les valeurs sont conformes à la norme.</td>
<td>11</td>
<td>0</td>
<td>Eau de bonne qualité.</td>
</tr>
</tbody>
</table>
ANNEXE 6 : Données communales sur l'assainissement

Sources : MAGE du Cantal, SATESE du Lot

Légende :

Italique : Données théoriques des stations en cours de construction, ou récemment achevées

- Station rejetant en dehors de bassin versant du Célé
- Absence de station sur la commune

- % : pourcentage des charges hydraulique et organiques mesurées lors des contrôles par rapport aux charges nominales.

- SCA : Date de réalisation du Schéma Communal d'Assainissement

- SPANC : Existence d’un Service Public d’Assainissement Non Collectif sur le commune : Oui / Non
Amélioration du fonctionnement de la station, suppression des eaux pluviales et des eaux claires, amélioration du transfert des effluents, création d'une nouvelle station d'épuration de 150 EH. Plan d'épandage démarré. Réhabilitation de la station au nord du bourg.

Amélioration du fonctionnement de la station, suppression des eaux pluviales et des eaux claires, aménagement du transfert des effluents, quelques raccordements prévus. Plan d'épandage démarré. Conventions de raccordement à mettre en place avec les entreprises.

Suppression des eaux météoriques et des eaux claires et amélioration du transfert. Plan d'épandage démarré. Conventions de raccordement à mettre en place avec les entreprises.

Travaux conseillés (SCA) ou en cours

Absence de SCA ou d'actions en cours.
<table>
<thead>
<tr>
<th>Commune</th>
<th>Code STEP</th>
<th>NB raccor des</th>
<th>Activités raccordées</th>
<th>Traitement</th>
<th>Capa- cité en EH</th>
<th>Milieu récepteur (Sous bassin)</th>
<th>Année mise en service</th>
<th>Sources charges et remanques (date)</th>
<th>Charge hydraulique (%)</th>
<th>Charge Orga (Ev kg/kg) %</th>
<th>Remarques des services de suivi (MAGE/SATESE)</th>
<th>SCA</th>
<th>SPAN (Oui/Non)</th>
<th>Zonage SCA</th>
<th>Travaux conseillés (SCA) ou en cours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinquac</td>
<td>15117v001</td>
<td>40</td>
<td>1 maison d'enfants, 1 maison de pèlerinage</td>
<td>Bases activées en aération prolongée</td>
<td>300</td>
<td>Ruisseau de l'étang (Rance-Arcambé)</td>
<td>1974</td>
<td>visites MAGE (nov 2005)</td>
<td>45 37%</td>
<td>18 13%</td>
<td>Station vétuste, ne fonctionne plus de manière satisfaisante ; débordement de boues, mauvaise aération. Destination des boues : lacs de décharge</td>
<td>2001</td>
<td>N</td>
<td></td>
<td>Seul le Bourg en assainissement collectif. Réhabilitation du réseau du bourg, pose d'un réseau séparatif au niveau de la Maison d'enfants, aménagement de la STEP et à plus long terme remplacement.</td>
</tr>
<tr>
<td>Commune</td>
<td>Code STEP</td>
<td>Nb raccordés</td>
<td>Activités raccordées</td>
<td>Traitement</td>
<td>Capacité en EH</td>
<td>Milieu receputeur (Sous bassin)</td>
<td>Année mise en service</td>
<td>Sources chargés et remarques (date)</td>
<td>Charge hydraulique (m³/j)</td>
<td>Charge Orga (%)</td>
<td>Remarques des services de suivi (MAGE/SATESE)</td>
<td>Zone SCA</td>
<td>Travaux conseillés (SCA) ou en cours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagnac sur Célé</td>
<td>46015v001</td>
<td>419</td>
<td>1 hôtel, 2 restaurants, 1 camping</td>
<td>Boues activées, aération prolongée</td>
<td>1000</td>
<td>Céle</td>
<td>1975</td>
<td>suivi SATESE (3 visites en 2003)</td>
<td>150 156% 70 47%</td>
<td>Station en surcharge hydraulique permanente. Intrusion d'eaux parasites. Absence de filière de traitement des boues. Extraction des boues et épandage agricole.</td>
<td>2001</td>
<td>Pas d'extension du réseau : seul le bourg est en assainissement collectif.</td>
<td>Limitation intrusion d'eaux parasites, suppression jets directs, réhabilitation et extension de la station. Etude sur épandage des boues réalisée, à évoquer pour la nouvelle station.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bessouries</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blars</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bourg (Le)</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouyssou (Le)</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouzières</td>
<td>station en projet</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brennus</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cajarc</td>
<td>46045v002</td>
<td>514</td>
<td>Plusieurs restaurants, 1 camping, 1 école, 1 salle des fêtes</td>
<td>Boues activées</td>
<td>3500</td>
<td>Lot</td>
<td>2002</td>
<td>- ? ? ?</td>
<td>La station fonctionne correctement bien que soit en légère sous charge.</td>
<td>2005</td>
<td>Bourg en collectif, reste de la commune en autonome.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambutat</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbans</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarques:
- **SCA:** Système de collecte d'eaux usées.
- **SPANC (Ou/Non):** Station de traitement des eaux usées.
- **Zone SCA:** Zone de collecte d'eaux usées.
- **Travaux conseillés (SCA) ou en cours:** Les travaux conseillés ou en cours pour chaque commune.
<table>
<thead>
<tr>
<th>Commune</th>
<th>Code STEP</th>
<th>Nb marrons</th>
<th>Activités raccordées</th>
<th>Traitement</th>
<th>Milieu récepteur (en cours)</th>
<th>Sources chargées et remarques (date)</th>
<th>Charge hydraulique (m³/j)</th>
<th>Charge Orga (kg/j)</th>
<th>Remarques des services de suivi (MAGE/SATESE)</th>
<th>SCA (OUI/ NON)</th>
<th>Zonation SCA</th>
<th>Travaux conseillés (SCA) ou en cours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espagnac Sainte Eulalie</td>
<td>station en cours</td>
<td>7</td>
<td>Sol d’abattage</td>
<td>Filtre à eaux usées</td>
<td>100 Infiltration (Basse vallée du Célot)</td>
<td>Prévue en 2007</td>
<td>38 % 14 %</td>
<td>Travaux en cours. Les paramètres énoncés sont les paramètres théoriques de la future station.</td>
<td>2001 O</td>
<td></td>
<td></td>
<td>Initialement toute la commune était prévue en autonome. Finalement le bourg est en collectif. Levers topographiques en cours. Le zonage prend toute la partie agricole du bourg et les habitations autour du captage de Butac.</td>
</tr>
<tr>
<td>Espédaillac</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2004 O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lissac et Mouret</td>
<td>station de Figéac, station en cours</td>
<td>7</td>
<td>Filtre à eaux usées</td>
<td>500 Infiltration (Drouzou)</td>
<td>?</td>
<td></td>
<td></td>
<td>Les paramètres énoncés sont les paramètres théoriques de la future station.</td>
<td>1997 O</td>
<td>Bourg en collectif, le reste de la commune est en semi collectif.</td>
<td>Construction d’une station de 450 EH prévue pour 2007 (125 branchements).</td>
<td></td>
</tr>
<tr>
<td>Faujac gare</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td></td>
</tr>
<tr>
<td>Fons</td>
<td>46108v01</td>
<td>80</td>
<td>1 institut médico-éducatif</td>
<td>Lagunage naturel</td>
<td>100 R. de Douresse (Drouzou)</td>
<td>1982 suivi SATESE (2 visites en 2003)</td>
<td>15 % 6 %</td>
<td>Qualité d’épuration insuffisante.</td>
<td>2004 O</td>
<td>Le bourg est en collectif, le reste de la commune est en semi collectif.</td>
<td>Réhabilitation du réseau et mise en place d’une nouvelle STEP de 260 EH. Projet annulé.</td>
<td></td>
</tr>
<tr>
<td>Fourmagnac</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>avant 2000 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td>Projet de création STEP et réseau pour le bourg.</td>
</tr>
<tr>
<td>Gorses</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td></td>
</tr>
<tr>
<td>Labastide du Haut Mont</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td></td>
</tr>
<tr>
<td>Labastide</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2002 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td></td>
</tr>
<tr>
<td>Lauresses</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2004 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td>Réhabilitation prioritaire de 65 systèmes individuels.</td>
</tr>
<tr>
<td>Lauzes</td>
<td>station en projet</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1998 O</td>
<td>Zonation en cours de modification. Création réseau et STEP (190 000 € de travaux prévus.</td>
<td></td>
</tr>
<tr>
<td>Lentillac Lauzés</td>
<td>pas de station</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000 O</td>
<td>Toute la commune est en assainissement autonome.</td>
<td></td>
</tr>
<tr>
<td>Commune</td>
<td>Code STEP</td>
<td>Nb raccords</td>
<td>Activités raccordées</td>
<td>Traitemen t</td>
<td>Capa- cité en EN</td>
<td>Milieu récepteur (Sous bassin)</td>
<td>Année mise en service</td>
<td>Sources chargées et remarques (date)</td>
<td>Charge hydraul. (m3/j)</td>
<td>Charge Orga (kg/j)</td>
<td>Charge Orga (%)</td>
<td>Remarques des services de suivi (MAGE/SATESE)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Linac</td>
<td>pas de station</td>
<td>0</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Filtre planté de roseaux</td>
<td>400</td>
<td>Sous sol (Basse vallée du Céle)</td>
<td>2001</td>
<td>suivi SATESE (4 visites en 2003)</td>
<td>60</td>
<td>?</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Livemont</td>
<td>46176v00 1</td>
<td>51</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Filtre planté de roseaux</td>
<td>400</td>
<td>Sous sol (Basse vallée du Céle)</td>
<td>2001</td>
<td>suivi SATESE (4 visites en 2003)</td>
<td>60</td>
<td>?</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Lunan</td>
<td>pas de station</td>
<td>0</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Filtre planté de roseaux</td>
<td>400</td>
<td>Sous sol (Basse vallée du Céle)</td>
<td>2001</td>
<td>suivi SATESE (4 visites en 2003)</td>
<td>60</td>
<td>?</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Marolich sur Céle</td>
<td>46183v00 1</td>
<td>94</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Lit d'infiltre percolation</td>
<td>300</td>
<td>Sous sol (Basse vallée du Céle)</td>
<td>1993</td>
<td>suivi SATESE (2 visites en 2003)</td>
<td>45</td>
<td>?</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Montet et Bouxal</td>
<td>46203v00 1</td>
<td>41</td>
<td>Hôtel, station de lavage, garages</td>
<td>Lagunage naturel</td>
<td>120</td>
<td>R. de Burellet (Bervezou)</td>
<td>1990</td>
<td>suivi SATESE (2 visites en 2003)</td>
<td>18</td>
<td>?</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Montredon</td>
<td>46207v00 1</td>
<td>36</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Filtre planté de roseaux</td>
<td>330</td>
<td>Affluent du R. de Guirande (Céle-Enguerrande)</td>
<td>2002</td>
<td>suivi SATESE (2 visites en 2003)</td>
<td>50</td>
<td>?</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Ouniac</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Planioles</td>
<td>46221v00 1</td>
<td>63</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Lagunage naturel</td>
<td>130</td>
<td>R. de Planioles (Drauzou)</td>
<td>1985</td>
<td>suivi SATESE (2 visites en 2003)</td>
<td>20</td>
<td>?</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>Predeignes</td>
<td>station non suivie</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>Quissac</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Reyrenvignes</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Sabadel Latronquère</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Sabadel Lauzès</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Bressou</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Camin</td>
<td>station en projet</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Chels</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Circques</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Sainte Colombe</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Félix</td>
<td>4626v00 2 hors BV</td>
<td>10</td>
<td>1 camping, 1 école, 2 restaurants</td>
<td>Epandage souterrain</td>
<td>50</td>
<td>Sous sol (Basse vallée du Céle)</td>
<td>1989</td>
<td>suivi SATESE (2 visites en 2003)</td>
<td>8</td>
<td>?</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Saint Géry</td>
<td>4626v00 1 hors BV</td>
<td>147</td>
<td>-</td>
</tr>
<tr>
<td>Saint Hilaire</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Jean de Mirebel</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Saint Martin Labouval</td>
<td>pas de station</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Commune</td>
<td>Code STEP</td>
<td>Nb raccordés</td>
<td>Activités raccordées</td>
<td>Traitement</td>
<td>Capacité en EH</td>
<td>Milieu récepteur (Sous bassin)</td>
<td>Année mise en service</td>
<td>Sources charges et remarques (date)</td>
<td>Charge hydrau</td>
<td>Charge Orga</td>
<td>Remarques des services de suivi (MAGE/SATESE)</td>
<td>SCA</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Saint Maurice en Quercy</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Saint Perdoux</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Saint Simon</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sauliac sur Céle</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sénaillac-Lauzès</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sonac</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activités raccordées</th>
<th>Traitement</th>
<th>Capacité en EH</th>
<th>Milieu récepteur (Sous bassin)</th>
<th>Année mise en service</th>
<th>Sources charges et remarques (date)</th>
<th>Charge hydrau</th>
<th>Charge Orga</th>
<th>Remarques des services de suivi (MAGE/SATESE)</th>
<th>SCA</th>
<th>SPANC (Oui/Non)</th>
<th>Zonage SCA</th>
<th>Travaux conseillés (SCA) ou en cours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Diagnostic du système en cours. (SGS multilab)</td>
</tr>
<tr>
<td></td>
<td>Projet collectif abandonné (construction de 2 stations de 30 et 130 EH). Opération groupée de réhabilitation de l'assainissement non collectif en cours.</td>
</tr>
<tr>
<td></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Réhabilitation groupée de l'assainissement individuel réalisée en 2006 (42 habitations).</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 7 : Données agricoles
Sources: RGA 2000
<table>
<thead>
<tr>
<th>Commune</th>
<th>2000</th>
<th>2008</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSIER</td>
<td>733</td>
<td>15</td>
<td>210</td>
</tr>
<tr>
<td>BAGNAC-SUR-CELE</td>
<td>1916</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>BEDUER</td>
<td>1322</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>BESSONIES</td>
<td>609</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>BILARS</td>
<td>1179</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>BOURG</td>
<td>746</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>BOUSSAC</td>
<td>623</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>BOUSSOU</td>
<td>201</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>BOUZIES</td>
<td>62</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BRENGUES</td>
<td>392</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>CABRERETS</td>
<td>1311</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>CAJARC</td>
<td>492</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>CAMBES</td>
<td>184</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CAMBOULIT</td>
<td>933</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>CAMBURAT</td>
<td>522</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>CANAC-DU CAUSSE</td>
<td>1967</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>CARDAILLAC</td>
<td>484</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>CORN</td>
<td>791</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>DURBANS</td>
<td>1272</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>ESPAGNAC- SAINTE-ESLALE</td>
<td>170</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>ESPEDAILLAC</td>
<td>1041</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>FAYCELLES</td>
<td>587</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>FELZIN</td>
<td>944</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>FIGEAC</td>
<td>1306</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>FLAUJAC-GARE</td>
<td>579</td>
<td>c</td>
<td>3</td>
</tr>
<tr>
<td>FONS</td>
<td>1095</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>FOURMAGNAC</td>
<td>216</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>GORESSE</td>
<td>1682</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>GRELAOU</td>
<td>1091</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>GREZES</td>
<td>854</td>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>ISSEPTS</td>
<td>656</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>LABASTIDE-DU-HAUT-MONT</td>
<td>480</td>
<td>12</td>
<td>c</td>
</tr>
<tr>
<td>LABATHUDE</td>
<td>653</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>LACAPELLE- MARIVAL</td>
<td>554</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>LARNAGOL</td>
<td>465</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>LATRONQUERIE</td>
<td>630</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>LAURESSSE</td>
<td>1506</td>
<td>28</td>
<td>27</td>
</tr>
</tbody>
</table>

Sauces exploitations

<table>
<thead>
<tr>
<th>Commune</th>
<th>2000</th>
<th>2008</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSIER</td>
<td>733</td>
<td>15</td>
<td>210</td>
</tr>
<tr>
<td>BAGNAC-SUR-CELE</td>
<td>1916</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>BEDUER</td>
<td>1322</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>BESSONIES</td>
<td>609</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>BILARS</td>
<td>1179</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>BOURG</td>
<td>746</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>BOUSSAC</td>
<td>623</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>BOUSSOU</td>
<td>201</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>BOUZIES</td>
<td>62</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BRENGUES</td>
<td>392</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>CABRERETS</td>
<td>1311</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>CAJARC</td>
<td>492</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>CAMBES</td>
<td>184</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CAMBOULIT</td>
<td>933</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>CAMBURAT</td>
<td>522</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>CANAC-DU CAUSSE</td>
<td>1967</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>CARDAILLAC</td>
<td>484</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>CORN</td>
<td>791</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>DURBANS</td>
<td>1272</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>ESPAGNAC- SAINTE-ESLALE</td>
<td>170</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>ESPEDAILLAC</td>
<td>1041</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>FAYCELLES</td>
<td>587</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>FELZIN</td>
<td>944</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>FIGEAC</td>
<td>1306</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>FLAUJAC-GARE</td>
<td>579</td>
<td>c</td>
<td>3</td>
</tr>
<tr>
<td>FONS</td>
<td>1095</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>FOURMAGNAC</td>
<td>216</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>GORESSE</td>
<td>1682</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>GRELAOU</td>
<td>1091</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>GREZES</td>
<td>854</td>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>ISSEPTS</td>
<td>656</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>LABASTIDE-DU-HAUT-MONT</td>
<td>480</td>
<td>12</td>
<td>c</td>
</tr>
<tr>
<td>LABATHUDE</td>
<td>653</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>LACAPELLE- MARIVAL</td>
<td>554</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>LARNAGOL</td>
<td>465</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>LATRONQUERIE</td>
<td>630</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>LAURESSSE</td>
<td>1506</td>
<td>28</td>
<td>27</td>
</tr>
</tbody>
</table>

Exploitations protégées
Agreste Recensements
agricoles
Données par
commune

SAU des
exploitatio
ns

Exploitations
profession
nelles

Exploita
- tions
professi
onnelles

Terres
laboura
bles

Terres
laboura
bles

Céréa
les

Céréa
les

Superficie
fourragère
principale

Superficie
fourragère
principale

Superficie
toujours
en herbe

Superficie
toujours
en herbe

Total
bovins

Superficie
(ha)

Exploitatio
ns

Exploitat
ions

Superfic
ie (ha)

Superfic
ie (ha)

Super
ficie
(ha)

Super
ficie
(ha)

Superficie
(ha)

Superficie
(ha)

Superficie
(ha)

Superficie
(ha)

Effectif Effectif Effectif Effectif Effectif Effectif Effectif Effectif

2000

1988

2000

1988

2000

1988

2000

1988

2000

1988

Total
Total
Total
bovins caprins caprins

2000

1988

2000

Total
ovins

Total
ovins

Total
Total
porcins porcins

1988

2000

Superficie
drainée
par drains
enterrés
Superficie
(ha) ou
parc

Superficie
drainée
par drains
enterrés
Superficie
(ha) ou
parc

Chefs et
coexploi
tants Total

Chefs et
coexploi
tants Total

Exploitatio
ns sous
formes
sociétaires

Exploitatio
ns sous
formes
sociétaires

Effectif

Effectif

Exploitatio
ns

Exploitatio
ns

1988

2000

1988

2000

1988

2000

1988

2000

1979

2000

LAUZES

820

6

c

261

315

92

67

360

749

232

505

57

c

0

c

1 427

2 313

c

c

0

0

11

9

0

c

LENTILLAC-DUCAUSSE
LINAC

811

6

6

214

304

73

60

447

739

319

503

15

0

c

0

2 130

2 418

8

c

0

0

18

14

c

c

604

14

15

166

156

55

24

546

568

437

436

913

724

52

c

570

701

91

9

3

0

41

23

3

c

LISSAC-ET-MOURET

1 001

19

13

346

371

142

107

753

885

554

626

316

344

105

c

3 135

4 038

24

3

5

c

47

24

7

3

LIVERNON

1 630

19

c

449

551

162

112

1 313

1 510

1 039

1 075

69

76

35

c

5 315

6 117

27

8

c

14

38

21

4

c

LUNAN

289

7

4

85

125

33

11

270

277

219

163

353

316

27

c

749

190

1 078

c

5

c

25

12

c

c

MARCILHAC-SURCELE

802

11

7

234

267

112

106

603

675

487

532

183

246

0

0

1 459

1 630

25

5

0

0

23

16

c

c

MONTET-ET-BOUXAL

816

18

18

319

370

74

47

583

766

345

443

908

1 211

c

c

c

595

730

860

54

21

32

30

c

4

MONTREDON

940

25

16

300

230

90

44

849

884

641

699

1 360

1 632

c

0

852

278

506

c

5

0

42

37

c

5

ORNIAC

429

3

3

86

125

38

24

322

403

275

303

c

c

c

0

1 676

1 813

4

0

0

0

13

9

0

c

PLANIOLES

200

4

3

78

50

41

6

190

190

152

147

164

237

c

c

272

c

17

c

0

0

18

11

0

c

PRENDEIGNES

562

15

13

132

256

37

21

491

540

397

305

642

751

17

0

605

419

164

0

5

6

34

19

c

c

QUISSAC

808

9

c

411

399

143

111

689

696

427

408

159

0

17

0

3 185

4 028

457

c

0

0

19

13

3

4

REYREVIGNES

813

11

11

230

252

98

54

624

755

497

558

613

817

12

0

1 869

2 132

24

c

c

c

29

18

c

c

SABADELLATRONQUIERE

476

14

11

291

319

63

32

431

432

204

146

931

1 022

c

0

640

658

1 119

c

32

24

23

19

3

4

SABADEL-LAUZES

514

9

c

196

329

86

55

251

455

148

182

315

326

c

c

0

c

7

0

0

0

14

12

c

c

SAINT-BRESSOU

432

8

10

126

178

53

28

352

398

280

248

385

685

c

c

213

623

27

4

15

32

20

14

c

c

SAINT-CERNIN

721

11

6

416

279

152

63

800

649

548

439

262

244

80

c

1 887

1 037

13

10

0

0

30

15

c

c

SAINT-CHELS

891

14

12

213

230

94

88

779

787

668

655

48

32

186

c

2 082

3 075

1 096

1 145

0

0

28

23

0

0
16

SAINT-CIRGUES

1 859

48

44

899

1 113

214

170

1 588

1 682

910

741

3 111

2 799

26

c

809

252

1 246

1 401

65

82

90

70

10

SAINT-FELIX

600

12

9

219

322

57

28

491

564

331

276

848

774

c

0

1 067

237

98

c

28

44

35

19

3

c

SAINT-GERY

194

7

3

135

163

76

68

76

14

68

13

c

0

0

0

332

0

10

3

0

0

21

17

c

3

SAINT-HILAIRE

484

13

11

276

296

45

29

418

455

188

187

577

656

c

0

142

c

233

151

17

30

19

18

0

c

502

10

9

183

172

50

24

504

475

371

327

857

839

c

0

728

c

7

c

11

17

31

19

c

c

360

5

5

120

85

80

35

176

313

148

272

21

c

c

c

1 146

1 152

98

c

0

0

23

14

0

0

SAINT-JEANMIRABEL
SAINT-MARTINLABOUVAL
SAINT-MAURICE-ENQUERCY

1 096

31

28

622

565

135

110

805

953

324

507

1 890

2 051

70

0

2 290

2 763

1 112

1 138

46

117

57

48

13

8

SAINT-PERDOUX

279

5

7

107

53

54

21

208

241

157

208

171

227

10

0

961

c

21

c

6

6

29

24

0

0

SAINT-SIMON

273

7

3

88

54

46

17

448

255

409

218

77

c

0

c

1 397

807

8

0

0

0

12

7

0

0

SAINT-SULPICE

625

c

9

217

330

91

65

547

550

433

294

103

103

0

c

1 462

2 433

43

371

0

0

13

10

c

c

SAINTE-COLOMBE

773

17

16

389

406

106

81

627

685

345

361

935

1 099

6

0

986

565

257

125

19

56

38

30

4

6

432

5

3

188

165

55

51

413

379

284

265

18

c

c

c

1 245

1 676

4

c

0

0

16

10

c

3

SAULIAC-SUR-CELE
SENAILLAC-LAUZES

848

6

6

357

447

96

75

743

770

492

399

131

c

102

c

1 558

3 772

6

0

0

0

18

13

c

c

SONAC

450

5

c

120

159

72

59

441

389

395

289

77

c

c

0

1 876

2 253

6

c

c

0

14

8

c

c

TOUR-DE-FAURE

162

7

6

131

148

91

75

32

5

17

c

31

0

0

0

c

0

c

0

0

0

24

18

c

c

VIAZAC

573

12

12

164

364

56

32

458

530

351

199

508

650

25

c

576

173

16

4

10

17

37

25

3

3


<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOISSET</td>
<td>2 355</td>
<td>50</td>
<td>48</td>
<td>1 025</td>
<td>1 345</td>
<td>161</td>
<td>152</td>
<td>2 080</td>
<td>2 197</td>
<td>1 218</td>
<td>1 006</td>
<td>3 646</td>
<td>4 399</td>
<td>c</td>
</tr>
<tr>
<td>CALVINET</td>
<td>727</td>
<td>18</td>
<td>14</td>
<td>572</td>
<td>539</td>
<td>88</td>
<td>83</td>
<td>719</td>
<td>643</td>
<td>236</td>
<td>187</td>
<td>1 272</td>
<td>1 316</td>
<td>c</td>
</tr>
<tr>
<td>CASSANCUZE</td>
<td>1 926</td>
<td>44</td>
<td>39</td>
<td>1 523</td>
<td>1 009</td>
<td>203</td>
<td>140</td>
<td>1 707</td>
<td>1 683</td>
<td>387</td>
<td>814</td>
<td>3 100</td>
<td>3 263</td>
<td>c</td>
</tr>
<tr>
<td>CAYROS</td>
<td>412</td>
<td>11</td>
<td>10</td>
<td>145</td>
<td>185</td>
<td>27</td>
<td>22</td>
<td>519</td>
<td>383</td>
<td>402</td>
<td>220</td>
<td>725</td>
<td>567</td>
<td>32</td>
</tr>
<tr>
<td>FOURNOULES</td>
<td>407</td>
<td>8</td>
<td>8</td>
<td>246</td>
<td>191</td>
<td>48</td>
<td>39</td>
<td>379</td>
<td>368</td>
<td>182</td>
<td>216</td>
<td>606</td>
<td>686</td>
<td>0</td>
</tr>
<tr>
<td>LA CAPELLE-FRANCOIS</td>
<td>1 132</td>
<td>c</td>
<td>17</td>
<td>653</td>
<td>766</td>
<td>122</td>
<td>119</td>
<td>859</td>
<td>1 012</td>
<td>329</td>
<td>365</td>
<td>1 835</td>
<td>1 986</td>
<td>0</td>
</tr>
<tr>
<td>LEYNNAC</td>
<td>1 905</td>
<td>45</td>
<td>39</td>
<td>1 049</td>
<td>929</td>
<td>147</td>
<td>135</td>
<td>1 801</td>
<td>1 767</td>
<td>901</td>
<td>973</td>
<td>3 053</td>
<td>3 616</td>
<td>5</td>
</tr>
<tr>
<td>MARCOLES</td>
<td>3 043</td>
<td>64</td>
<td>56</td>
<td>1 016</td>
<td>2 027</td>
<td>296</td>
<td>263</td>
<td>2 593</td>
<td>2 778</td>
<td>1 179</td>
<td>1 014</td>
<td>4 905</td>
<td>5 623</td>
<td>0</td>
</tr>
<tr>
<td>MAURS</td>
<td>2 187</td>
<td>53</td>
<td>49</td>
<td>921</td>
<td>1 020</td>
<td>148</td>
<td>79</td>
<td>1 887</td>
<td>2 088</td>
<td>1 118</td>
<td>1 160</td>
<td>3 534</td>
<td>3 858</td>
<td>c</td>
</tr>
<tr>
<td>MONTMURAT</td>
<td>381</td>
<td>5</td>
<td>6</td>
<td>116</td>
<td>198</td>
<td>29</td>
<td>31</td>
<td>289</td>
<td>348</td>
<td>204</td>
<td>182</td>
<td>416</td>
<td>477</td>
<td>0</td>
</tr>
<tr>
<td>MOURJOU</td>
<td>1 845</td>
<td>47</td>
<td>44</td>
<td>1 372</td>
<td>867</td>
<td>214</td>
<td>125</td>
<td>1 705</td>
<td>1 718</td>
<td>547</td>
<td>956</td>
<td>3 553</td>
<td>3 870</td>
<td>32</td>
</tr>
<tr>
<td>PARLAN</td>
<td>1 032</td>
<td>23</td>
<td>22</td>
<td>415</td>
<td>635</td>
<td>77</td>
<td>46</td>
<td>1 076</td>
<td>986</td>
<td>741</td>
<td>396</td>
<td>1 818</td>
<td>1 787</td>
<td>c</td>
</tr>
<tr>
<td>QUEZAC</td>
<td>1 459</td>
<td>31</td>
<td>31</td>
<td>715</td>
<td>898</td>
<td>108</td>
<td>90</td>
<td>1 278</td>
<td>1 367</td>
<td>674</td>
<td>559</td>
<td>1 823</td>
<td>2 296</td>
<td>0</td>
</tr>
<tr>
<td>ROUANCES-SAINTE-MARY</td>
<td>2 278</td>
<td>58</td>
<td>50</td>
<td>1 015</td>
<td>1 282</td>
<td>160</td>
<td>160</td>
<td>2 450</td>
<td>2 117</td>
<td>1 596</td>
<td>995</td>
<td>4 547</td>
<td>4 101</td>
<td>c</td>
</tr>
<tr>
<td>ROUGET</td>
<td>631</td>
<td>10</td>
<td>c</td>
<td>267</td>
<td>418</td>
<td>32</td>
<td>43</td>
<td>547</td>
<td>588</td>
<td>312</td>
<td>213</td>
<td>842</td>
<td>849</td>
<td>c</td>
</tr>
<tr>
<td>ROUMEGOUX</td>
<td>998</td>
<td>18</td>
<td>17</td>
<td>377</td>
<td>553</td>
<td>66</td>
<td>60</td>
<td>790</td>
<td>935</td>
<td>486</td>
<td>444</td>
<td>1 214</td>
<td>1 602</td>
<td>24</td>
</tr>
<tr>
<td>ROUSZIERS</td>
<td>547</td>
<td>11</td>
<td>9</td>
<td>227</td>
<td>274</td>
<td>44</td>
<td>40</td>
<td>544</td>
<td>504</td>
<td>362</td>
<td>270</td>
<td>787</td>
<td>889</td>
<td>0</td>
</tr>
<tr>
<td>SAINT-ANTOINE</td>
<td>800</td>
<td>14</td>
<td>c</td>
<td>347</td>
<td>364</td>
<td>60</td>
<td>57</td>
<td>599</td>
<td>742</td>
<td>314</td>
<td>335</td>
<td>1 013</td>
<td>1 243</td>
<td>4</td>
</tr>
<tr>
<td>SAINT-CONSTANT</td>
<td>2 101</td>
<td>51</td>
<td>44</td>
<td>1 148</td>
<td>839</td>
<td>180</td>
<td>137</td>
<td>1 897</td>
<td>1 963</td>
<td>929</td>
<td>1 260</td>
<td>3 760</td>
<td>3 773</td>
<td>38</td>
</tr>
<tr>
<td>SAINT-ETIENNE-DE-MAURS</td>
<td>1 160</td>
<td>28</td>
<td>26</td>
<td>458</td>
<td>594</td>
<td>96</td>
<td>64</td>
<td>1 208</td>
<td>1 089</td>
<td>847</td>
<td>558</td>
<td>1 846</td>
<td>1 981</td>
<td>c</td>
</tr>
<tr>
<td>SAINT-JULIEN-DE-TOURVES</td>
<td>492</td>
<td>13</td>
<td>12</td>
<td>183</td>
<td>271</td>
<td>31</td>
<td>38</td>
<td>558</td>
<td>454</td>
<td>407</td>
<td>221</td>
<td>633</td>
<td>800</td>
<td>c</td>
</tr>
<tr>
<td>SAINT-MAMET-LASALVETAT</td>
<td>3 034</td>
<td>57</td>
<td>47</td>
<td>2 226</td>
<td>1 872</td>
<td>308</td>
<td>283</td>
<td>3 274</td>
<td>2 745</td>
<td>1 355</td>
<td>1 160</td>
<td>4 419</td>
<td>5 222</td>
<td>70</td>
</tr>
<tr>
<td>SAINT-SAINTE-DE-MAURS</td>
<td>956</td>
<td>17</td>
<td>18</td>
<td>380</td>
<td>508</td>
<td>103</td>
<td>88</td>
<td>901</td>
<td>866</td>
<td>625</td>
<td>445</td>
<td>1 588</td>
<td>1 859</td>
<td>c</td>
</tr>
<tr>
<td>SAINT-SAURY</td>
<td>1 691</td>
<td>28</td>
<td>c</td>
<td>665</td>
<td>823</td>
<td>115</td>
<td>70</td>
<td>1 465</td>
<td>1 621</td>
<td>919</td>
<td>867</td>
<td>2 289</td>
<td>2 963</td>
<td>c</td>
</tr>
<tr>
<td>SANSAC-VEINAZES</td>
<td>682</td>
<td>19</td>
<td>c</td>
<td>403</td>
<td>513</td>
<td>68</td>
<td>61</td>
<td>2 346</td>
<td>2 047</td>
<td>1 156</td>
<td>1 350</td>
<td>6 964</td>
<td>7 598</td>
<td>0</td>
</tr>
<tr>
<td>SENEZERGUES</td>
<td>1 521</td>
<td>26</td>
<td>27</td>
<td>794</td>
<td>896</td>
<td>121</td>
<td>85</td>
<td>1 067</td>
<td>1 233</td>
<td>337</td>
<td>423</td>
<td>2 001</td>
<td>2 447</td>
<td>c</td>
</tr>
<tr>
<td>TROUDEL</td>
<td>762</td>
<td>10</td>
<td>11</td>
<td>199</td>
<td>267</td>
<td>31</td>
<td>26</td>
<td>540</td>
<td>735</td>
<td>372</td>
<td>494</td>
<td>972</td>
<td>1 408</td>
<td>5</td>
</tr>
<tr>
<td>VITRAC</td>
<td>994</td>
<td>23</td>
<td>17</td>
<td>543</td>
<td>718</td>
<td>122</td>
<td>130</td>
<td>895</td>
<td>859</td>
<td>475</td>
<td>275</td>
<td>1 358</td>
<td>1 389</td>
<td>c</td>
</tr>
<tr>
<td>SAINT-SAULT</td>
<td>2 389</td>
<td>39</td>
<td>40</td>
<td>963</td>
<td>1 170</td>
<td>199</td>
<td>158</td>
<td>1 859</td>
<td>2 215</td>
<td>1 096</td>
<td>1 204</td>
<td>2 768</td>
<td>3 592</td>
<td>424</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13 686</td>
<td>284</td>
<td>256</td>
<td>12 819</td>
<td>14 770</td>
<td>1 396</td>
<td>1 539</td>
<td>48 169</td>
<td>50 047</td>
<td>18 462</td>
<td>20 714</td>
<td>114 628</td>
<td>132 856</td>
<td>3 278</td>
</tr>
</tbody>
</table>

Notas:
- "c" indica censos.
- "%" indica porcentajes.
- "Total porcins" y "Total porcins - Total" son valores calculados a partir de los datos anteriores.
ANNEXE 8 : Glossaire
AAPPMA : Association Agrée pour la Pêche et pour la Protection des Milieux Aquatiques
AAVL : Association pour l’Aménagement de la Vallée du Lot
ABF : Architecte des Bâtiments de France
ADASEA : Association Départementale pour l’Aménagement des Structures d’Exploitations Agricoles
APPB : Arrêtés Préfectoraux de Protection de Biotope
AEP : Alimentation en Eau Potable
BTP : Bâtiment et Travaux Public
CAD : Contrat d’Agriculture Durable
CCI : Chambres de Commerce et d’Industrie
CDC : Communauté de Communes
CEPA : Conservatoire des Espaces et Paysages d’Auvergne
CLE : Commission Locale de l’Eau
CPIE : Centre Permanent d’Initiative pour l’Environnement
CRPF : Centre Régional de la Propriété Forestière
CSP : Conseil Supérieur de la Pêche
CTE : Contrat Territorial d’Exploitation
DBO : Demande Biologique en Oxygène
DCE : Directive cadre Européenne sur l’eau
DCO : Demande Chimique en Oxygène
DCR : Débit de CRise
DDASS : Direction Départementale des Affaires Sanitaires et Sociales
DDAF : Direction Départementale de l’Agriculture et de la Forêt
DDE : Direction Départementale de l’Equipement
DEA : Direction Départementale de l’Equipement et de l’Agriculture
DIREN : Direction Régionale de l’Environnement
DOC : Débit Objectif Complémentaire
DOE : Débit Objectif d’Étiage
DRIRE : Direction Régionale de l’Industrie, de la Recherche et de l’Environnement
DUP : Déclaration d’Utilité Publique
ENS : Espace Naturel Sensible
IBGN : Indice Biologique Global Normalisé
IFN : Institut Forestier National
IQBG : Indice de Qualité Biologique Globale
LEH : Laboratoire d’Ecologie des Hydrosystèmes
EH : Equivalent Habitant
MAC : Module d’Actions Cohérent
MAETER : Mesure Agro-Environnementale TERritorialisée
MAGE : Mission d'Assistance à la Gestion des Eaux
MES : Matières en suspension
N : Azote
ONCFS : Office National de la Chasse et de la Faune Sauvage
PDPG : Plan Départemental pour la Protection du milieu aquatique et la Gestion des
ressources piscicoles
PGE : Plan de Gestion des Etiages
PHEC : Plus Hautes Eaux Connues
PLU : Plan Local d'Urbanisme
PMPOA : Programme de Maîtrise des Pollutions d'Origine Agricole
PPR : Plan de Prévention des Risques
PPRI : Plan de Prévention des Risques d'Inondation
PPRN : Plan de Prévention des Risques Naturels
RAC : Recommandation d'Actions Complémentaires
RGA : Recensement Général Agricole
RHP : Réseau Hydrobiologique Piscicole
SAC : Service d'Annonce des Crues
SAGE : Schéma d'Aménagement et de Gestion des Eaux
SATESE : Service d'Assistance Technique à l'Epuration et au Suivi des Eaux
SAU : Superficie Agricole Utile
SCA : Schéma Communal d'Assainissement
SDAEP : Schéma Départemental pour l'Alimentation en Eau Potable
SDAGE : Schéma Directeur d'Aménagement et de Gestion des Eaux
SIAEP : Syndicat Intercommunal d'Alimentation en Eau Potable
SIAH : Syndicat Intercommunal d'Aménagement Hydraulique
SPANC : Service Public d'Assainissement Non Collectif
SPC : Service de Prévision des Crues
STEP : Station d'Epuration
STH : Superficie Toujours en Herbe
UDI : Unité de Distribution
UGB : Unité Gros Bétail
UGE : Unité de Gestion
VCN X : débit minimal sur X jours consécutifs
ZNIEFF : Zone Naturelle d'Intérêt Ecologique Faunistique et Floristique
ANNEXE 9 : Références bibliographiques
Agreste, Recensement Général agricole - 2000

Agence de l'Eau Adour – Garonne, données industries - 2003

Agence de l'Eau Adour-Garonne, Etat des lieux du territoire, commission géographique LOT, synthèse - 2006

Agence de l'Eau Adour – Garonne, Le 9e programme d'intervention de l'agence de l'eau Adour-Garonne - Dossier de presse - janvier 2007

Association pour l'aménagement de la Vallée du Lot (Erwan Leconte), Schéma d'aménagement d'équipement et de pratique des activités de loisir sur le Célé - 2000

Association pour l'aménagement de la Vallée du Lot - Déclaration d'intérêt général pour la restauration et l'aménagement des berges et des milieux aquatiques du Célé - 2001

Association pour l'Aménagement de la Vallée du Lot (Boris LE JOLLY, Julien JOURDON), Etude d'inventaire et de caractérisation des chaussées du bassin versant du Célé - 2002

Association pour l'Aménagement de la Vallée du Lot, Etude sur l'amélioration de la qualité paysagère en Vallée du Célé - 2006

Banque hydro, Données du suivi hydrologique, station de Merlançon, d'Orniac, et de Maurs - 2006

BRIL, Avis hydrogéologique en vue de l'établissement des périmètres réglementaires pour la protection des ressources en eau - 2005

Cabinet d'étude Gazagne et Rouquet, Faune des invertébrés aquatiques, indices Biologiques Globaux Normalisés - 2000

Cabinet d'étude Gazagne et Rouquet, Etude Hydrobiologique du Célé et de la Rance - 2001

Calligee, SIAEP de la Vallée du Célè, Etudes préalables à l'établissement des périmètres de protection de la source captée de Bullac, phase 2 : traçages complémentaires - 2007

Chambre de Commerce et d'Industries du Lot, Liste des établissements industriels - 2005

Chambres d'Agriculture du Lot et du Cantal, Diagnostic Agricole - 2000

Compagnie d'aménagement rural d'Aquitaine, Etude pour la réalimentation du Lot et du Célé - 1997

Conseil Général du Lot, Schéma départemental d'alimentation en Eau potable du Lot - 2000

Conseil Général du Cantal, Schéma départemental d'alimentation en Eau potable du Cantal - 2005
Corine Land Cover, Occupation du sol en 2000 - départements du Lot, du Cantal et de l'Aveyron - 2005

CSP, Relevés Piscicoles - 1994 à1999

DDASS du Lot et Laboratoire Départemental de l'eau de la Haute Garonne, Contrôles sanitaires des eaux destinées à la consommation humaine, captages de Prentegrade et de Gabanelle - 2004 à 2006

DDE du Lot, Plan de gestion des déchets de chantier de BTP du Lot - 2002

DIREN Auvergne et Midi-Pyrénées, Liste des sites naturels remarquables - 2005

Fédération du Lot des AAPPMA, Plan départemental pour la protection du milieu aquatique et la gestion des ressources piscicoles du Lot – 2004

Géosphair et DDE du Cantal - PPRI du Célé amont Cantal – 2002

Géosphair et DDE du Lot - PPRI Célé amont Lot – rapport - 2000

HAMILLE N. (DDE du Lot), Le Bassin du Célé, Etude géographique et hydrogéologique - 1994

HOFFMAN F., Evaluation des pollutions nitratées et phosphatées des eaux souterraines dans les bassins karstiques du Célé et du Lot à l'est de Cahors - 2000

INSEE, recensement de la population - 1999

Larrouy-Castera, Conciliation des usages, droits et devoirs des riverains, usagers et acteurs des cours d'eau non domaniaux – 2000

LEH, Protection et gestion des habitats des espèces aquatiques patrimoniales du réseau hydrographique du Célé - 2006

Office National de la Chasse et de la Faune Sauvage, Suivi de la Loutre d'Europe Lutra Lutra en Midi-Pyrénées – 2005

Office National de la Chasse et de la Faune Sauvage, Suivi Loutre sur le département du lot, bassin hydrographique du Célé - 2003
Parc naturel régional des Causses du Quercy, Charte - 1998

Parc naturel régional des Causses du Quercy et Calligee, Etudes préalables à l’établissement des périmètres de protection des sources captées de Font del Pito, la Pescalerie et Font Polémie - en cours

Parc naturel régional des Causses du Quercy, Bassin versant du Célé, Habitats et espèces sensibles - 1998

SATESE du Lot, Note concernant la pollution des eaux de la rivière Célé par les micro-polluants minéraux - 2004

SATESE du Lot et MAGE du Cantal, Fiches de suivi STEP - 2004

SIEE, Etude sur l’amélioration de la qualité des eaux du Célé - 1994

Sogreah et DDE du Lot - Etude préalable à la réalisation du PPRI Célé aval – 2001

Sud Aménagement Agronomie, Diagnostic sédimentaire sur le Célé – 2004

Sud Aménagement Agronomie, Etude de l’impact hydraulique d’une levée en terre sur l’écoulement du Célé - 2006

Schémas Communaux d’Assainissement